светодиодный источник света

Классы МПК:H01L33/34 содержащие только элементы IV группы периодической системы
Автор(ы):, , , ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Российский университет дружбы народов" (РУДН) (RU)
Приоритеты:
подача заявки:
2011-02-03
публикация патента:

Изобретение относится к электронике и энергосберегающим технологиям, а именно к конструкции светодиодов. Светодиодный источник света содержит пленочные полупроводниковые слои, нанесенные на токопроводяшую подложку, служащую одним из электродов, имеющие поликристаллическую структуру с p-n-переходами во многих зернах поликристаллической пленки и покрытые снаружи слоем прозрачного токопроводящего материала, служащего вторым электродом. Изобретение обеспечивает возможность создания источника света более долговечного, с большим интегральным световым потоком и более дешевого. 1 ил.

светодиодный источник света, патент № 2479070

Формула изобретения

Светодиодный источник света, содержащий пленочные полупроводниковые слои, нанесенные на токопроводящую подложку, служащую одним из электродов, отличающийся тем, что пленочные полупроводниковые слои имеют поликристаллическую структуру с p-n-переходами во многих зернах поликристаллической пленки и покрыты снаружи слоем прозрачного токопроводящего материала, служащего вторым электродом.

Описание изобретения к патенту

Изобретение относится к электронике и энергосберегающим технологиям, а именно к конструкции светодиодов.

Конструкция современных светодиодов основана на полупроводниковых монокристаллах или эпитаксиальных пленках, выращенных на монокристаллах (United State Patent 5,006,908 Apr. 9, 1991; United State Patent 6,676,751 B2, Jan, 13, 2004). Наряду со многими достоинствами светодиоды имеют следующие недостатки.

1. Высокая цена. Отношение доллар/люмен для обычной лампы накаливания - приблизительно 0,001. А сверхяркие светодиоды в настоящее время могут достигать лишь отношения 0,04-0,02 доллара за люмен.

2. Малый световой поток. Обычный 0.5 мм светодиод, работающий на токе 20 мА, дает всего 1-3 люмена, а лампа накаливания мощностью 100 Вт - ~1000 люменов. Сверхяркие диоды работают при токе ~1А, но требуют специальных усилий по теплоотводу. К тому же они быстро деградируют и тоже уступают по светимости лампам накаливания.

3. Деградация качества светодиодов. Параметры светодиодов ухудшаются с течением времени, и эта деградация связана с такими факторами, как величина прямого тока, рабочая температура (теплоотвод), тип и качество используемых чипов.

Известны органические светодиоды (OLED), использующие тонкопленочные многослойные структуры, состоящие из слоев нескольких полимеров [R.H.Friend, R.W.Gymer, А.В.Holmes, J.Н.Burroughes, R.N.Marks, С.Taliani, D.D.С.Bradley, D.A. dos Santos, J.L.Brédas, M.Lögdlund, W.R.Salaneck, Electroluminescence in conjugated polymers, Nature 1999, 397, 121]. Обладая таким преимуществом перед неорганическими светодиодами, как возможность создания гибкого сворачиваемого в трубку источника света, органические светодиоды уступают в долговечности.

Техническим результатом, на достижение которого направлено изобретение, является создание источника света более долговечного с большим интегральным световым потоком и более дешевого. Технический результат достигается тем, что светодиодный источник света содержит пленочные полупроводниковые слои, нанесенные на токопроводящую подложку, служащую одним из электродов, имеющие поликристаллическую структуру с p-n-переходами во многих зернах поликристаллической пленки и покрытые снаружи слоем прозрачного токопроводящего материала, служащего вторым электродом.

Таким образом, предложена конструкция светодиодного источника света в виде поликристаллической неорганической пленки с планарным излучением.

Конструкция светодиодного источника света поясняется чертежом (Рис.1), на котором 1 - электрод из прозрачного электропроводящего материала, 2 - слой поликристаллической пленки p-типа проводимости, 3 - слой поликристаллической пленки n-типа проводимости, 4 - электрод с омическим контактом, 5 - несущая подложка. При этом слои p- и n-типа проводимости, отличающиеся легирующими примесями или составом, образуют p-n-переход. Важной конструктивной особенностью изобретения является использование в качестве электрода на излучающей свет стороне пленки слоя прозрачного электропроводящего материала (например, оксида индия Ln2 O3, легированного оловом, или графена).

Устройство работает следующим образом. При приложении положительного потенциала к электроду 1, контактирующему со слоем p-типа проводимости 2, и отрицательного потенциала к электроду 4, контактирующему со слоем n-типа проводимости 3, протекает ток. В области p-n-переходов носители заряда - электроны и дырки - рекомбинируют с излучением фотонов вследствие перехода электронов с одного энергетического уровня на другой. При этом рекомбинация носителей с излучением фотонов происходит одновременно во многих зернах поликристалла. В итоге устройство работает как множественная сборка светодиодов, лишенная индивидуальных токоподводов к отдельным светодиодам.

Ожидаемые преимущества по сравнению с известными прототипами.

1. Процесс получения поликристаллических пленок значительно дешевле и быстрее, чем выращивание кристаллов или эпитаксиальных пленок с последующей сборкой, что определяет низкую себестоимость изделий.

2. Возможность получения больших площадей, на которых излучают много кристаллитов. В результате можно иметь источник света с небольшой светимостью с единицы площади (малая плотность тока), но большой интегральной светимостью.

3. Небольшая плотность тока решает проблему теплоотвода и увеличивает долговечность светодиода, а также люминофора, используемого для получения белого света, как по сравнению с органическими светодиодами, так и по сравнению с сверхяркими неорганическими светодиодами.

4. Разброс ориентации кристаллитов позволяет получить изотропное излучение, необходимое для светильников.

5. Конструкция с прозрачным электродом, покрывающим всю поверхность изделия, повышает кпд использования рабочей поверхности и обеспечивает высокую надежность устройства, сохраняющего работоспособность даже при повреждениях, в том числе механических, отдельных участков рабочей поверхности светильника.

Разработка светодиодов в виде поликристаллических пленок открывает путь создания дешевых энергосберегающих источников света универсального применения.

Наверх