устройство для охлаждения и очистки газообразного гелия

Классы МПК:F25J3/08 отделение газовых примесей от газов или газовых смесей
Автор(ы):,
Патентообладатель(и):Федеральное государственное унитарное предприятие "Центр эксплуатации объектов наземной космической инфраструктуры" (ФГУП "ЦЭНКИ") (RU)
Приоритеты:
подача заявки:
2010-10-08
публикация патента:

Изобретение относится к наземным средствам охлаждения и очистки гелия и может быть использовано, в частности, при создании систем заправки газообразным гелием бортовых баллонов ракетоносителей при их подготовке к пуску на стартовом комплексе. Устройство для охлаждения и очистки газообразного гелия содержит криостат, датчик уровня жидкого азота, теплообменник, размещенный в среде газообразного азота, теплообменник, помещенный в жидкий азот, фильтр для улавливания вымороженных вредных примесей, электронагреватель гелия и электронагреватель азота для регенерации насыщенного фильтра. Устройство снабжено двумя блоками, параллельно установленными после фильтра, каждый из которых содержит последовательно расположенные электропневмоклапан и обратный клапан. Один блок соединен с теплообменником, расположенным в среде газообразного азота и выполненным двухполостным, а другой - с трубопроводом выдачи гелия потребителю после дополнительного обратного клапана, установленного после электронагревателя гелия. Технический результат при использовании заявленного изобретения проявляется в высоком качестве очистки гелия от вредных примесей при обеспечении требования расширения диапазона температур окружающей среды и баков, заправленных криогенными компонентами топлива, - от минус 40°С до плюс 50°С. 1 ил.

устройство для охлаждения и очистки газообразного гелия, патент № 2477429

Формула изобретения

Устройство для охлаждения и очистки газообразного гелия, содержащее криостат, датчик уровня жидкого азота, теплообменник, размещенный в среде газообразного азота, теплообменник, помещенный в жидкий азот, фильтр для улавливания вымороженных вредных примесей, электронагреватель гелия и электронагреватель азота для регенерации насыщенного фильтра, отличающееся тем, что устройство снабжено двумя блоками, параллельно установленными после фильтра, каждый из которых содержит последовательно расположенные электропневмоклапан и обратный клапан, при этом один блок соединен с теплообменником, расположенным в среде газообразного азота и выполненным двухполостным, а другой с трубопроводом выдачи гелия потребителю после дополнительного обратного клапана, установленного после электронагревателя гелия.

Описание изобретения к патенту

Изобретение относится к криогенной технике, а также к охлаждению и очистке газов, в частности газообразного гелия, от различного рода примесей и может быть использовано в ракетно-космической технике, атомной и химической промышленности.

Известны средства и технологии охлаждения и очистки газов, например, по авторскому свидетельству СССР № 1780390, МПК F25B 43/00, 1989, и по патенту РФ № 2111425, МПК F25B 43/00, 1996. Известна также технология охлаждения гелия в криостате: Микулин Е.М. Криогенная техника, М., Машиностроение, 1969.

Известные технологии заключаются в подаче газа, его охлаждении и очистке в криостатах, содержащих теплообменники, расположенные в жидком или охлажденном газообразном азоте. Недостатком устройств, реализующих упомянутую технологию, является отсутствие контроля охлаждения гелия до требуемой температуры вымораживания вредных примесей (порядка минус 150°С), очистки гелия от вымороженных частиц, последующем нагреве или охлаждения до температуры, необходимой потребителю.

Наиболее близким по технической сущности и достигаемому результату к заявленному решению является устройство для охлаждения и очистки газообразного гелия по патенту РФ № № 2282116, МПК F25B 43/00, 2006, принят заявителем за прототип.

В прототипе устройство для охлаждения и очистки гелия состоит из двух криостатов (один резервный), содержащих расположенный в жидком азоте теплообменник, датчик уровня жидкого азота для улавливания вымороженных частиц вредных примесей и трехполостной теплообменник, расположенный в среде газообразного азота, в котором гелий, охлажденный в теплообменнике, помещенном в жидкий азот, и прошедший через фильтр для улавливания вымороженных вредных примесей, нагревается при теплообмене с теплым гелием, поступающим в криостат, и затем в электронагревателе до требуемой потребителю положительной температуры, трубопровода подачи гелия потребителю, газообразного азота в криостат и электронагревателя азота для его нагрева до температуры, необходимой для регенерации насыщенного фильтра.

Преимуществом прототипа является возможность подачи теплого гелия в бортовые баллоны, расположенные в отсеках ракетоносителя, во всем диапазоне температур окружающей среды - от плюс 50 до минус 40°С.

Однако в настоящее время разработчики ракетоносителей с целью увеличения количества (веса) гелия, заправляемого в бортовые баллоны, без увеличения объема баллонов устанавливают их в баках с низкокипящим компонентом топлива (жидким кислородом). Так, например, в баллон объемом V м3 при температуре окружающей среды, равной температуре +20°С, в отсеке ракетоносителя при заданном давлении Р можно заправить: G1=PV:293R кг гелия, а при температуре жидкого кислорода, равной -183°С, когда баллон размещен в баке с жидким кислородом, можно заправить: G1=PV:90R, т.е. в 3,25 раза больше.

Недостатком прототипа является невозможность осуществления подачи потребителю гелия с низкой отрицательной температурой при заданной величине давления в баллонах потребителя, расположенных внутри баков, заполненных криогенным компонентом топлива. При подаче в баллоны теплого гелия в них будет происходить теплообмен между подаваемым гелием и жидким кислородом, что приведет к нагреву жидкого кислорода в баке и дополнительному испарению его в газовую подушку бака. При этом давление в газовой подушке будет возрастать выше допустимого, что приведет к автоматическому открытию дренажного клапана бака и нештатному сбросу газообразного кислорода в окружающую среду.

Задачей заявленного технического решения является возможность подачи гелия в бортовые баллоны, расположенные в баке, заполненном криогенным компонентом, с температурой ниже температуры компонента, например в бак, заполненный жидким кислородом при температуре минус 183°С, с температурой минус 190°С.

Решение задачи в заявленном устройстве обеспечивается тем, что устройство снабжено двумя блоками, параллельно установленными после фильтра криостата, каждый из которых содержит последовательно расположенные электропневмоклапан и обратный клапан, при этом один блок соединен с двухполостным теплообменником криостата, а другой с трубопроводом выдачи гелия потребителю после дополнительного обратного клапана, установленного после электронагревателя гелия.

Сравнительный анализ признаков, содержащихся в известных технических решениях и в заявленном устройстве, показал, что заявленная совокупность признаков соответствует критерию изобретения «изобретательский уровень».

Сущность заявленного устройства поясняется приложенной схемой.

Устройство для охлаждения и очистки газообразного гелия состоит из криостата 1, содержащего криогенную ванну 2, в которую заливают жидкий азот по трубопроводу 3, количество которого контролируется датчиком уровня 4; поз. 5 обозначено направление подачи азота от системы снабжения, а поз. 6 удаление вымороженных примесей из фильтра 10. Слив жидкого азота из ванны криостата производится через вентиль 7. В среде жидкого азота размещен теплообменник 8, а в газообразной азотной подушке ванны криостата размещены двухполостной теплообменник 9 и фильтр криостата 10 для улавливания вымороженных примесей. Вне криостата размещены электронагреватель гелия 11, электронагреватель азота 12, датчики температуры гелия 14 и 15, датчик температуры газообразного азота 16, электропневмоклапаны 17 и 18, обратные клапаны 19, 20, 21, трубопровод подачи в фильтр газообразного азота 22 и трубопровод подачи гелия потребителю 23. Электропневмоклапаны 17 и 18 соединены с фильтром криостата 10 и трубопроводом 24; обратный клапан 19 соединен с трубопроводом выдачи гелия потребителю 25, а обратный клапан 20 с двухполостным теплообменником 9 трубопроводом 26.

Для начала работы устройство заполняют жидким азотом через трубопровод 3 до срабатывания датчика уровня 4. Устройство может работать в двух режимах подачи гелия потребителю: режим 1 - подача гелия при положительных температурах, например от 5 до 40°С; режим 2 - подача гелия при отрицательной температуре, например минус 196°С.

Газообразный гелий с требуемым расходом, давлением и положительной температурой поступает от системы подачи гелия через двухполостной теплообменник 9 криостата 1 в теплообменник 8, расположенный в жидком азоте с температурой минус 196°С, где охлаждается до температуры минус 190°С и поступает в фильтр 10 для вымораживания вредных примесей. Очищенный гелий по трубопроводу 24 поступает к блокам, состоящим из последовательно расположенных электропневмоклапанов 17, 18 и обратных клапанов 19, 20.

При необходимости подачи очищенного гелия потребителю с положительными температурами (режим 1) гелий через электропневмоклапан 18 и обратный клапан 20 подают в двухполостной теплообменник 9, где он нагревается при теплообмене с теплым гелием, поступающим от системы подачи гелия, а окончательный нагрев гелия до требуемой потребителем положительной температуры производят в электронагревателе 11 и через обратный клапан 21 по трубопроводу 23 гелий подают потребителю. Контроль температуры гелия после фильтра проводят по датчику температуры 14, а на входе к потребителю - по датчику температуры 15.

При необходимости подачи потребителю очищенного гелия с температурой минус 190°С (режим 2) при закрытом электроклапане 18 открывают электропневмоклапан 17 и через обратный клапан 19 по трубопроводу 25 гелий подают в трубопровод 23 для подачи потребителю. Если в процессе работы устройства происходит уменьшение давления гелия, подаваемого потребителю, более чем на 0,5 МПа вследствие засорения фильтрующих элементов фильтра криостата вымороженными частицами вредных примесей, то закрывают электропневмоклапаны 17 и 18 и производят подачу в фильтр 10 газообразного азота от системы подачи азота, который нагревают в электронагревателе 12 до температуры 100°С. При этом происходит оттаивание вредных примесей на фильтрующих элементах фильтра и они вместе с горячим азотом выбрасываются в окружающую среду. Время продувки фильтра определяют опытным путем. После окончания продувки вновь открывают электропневмоклапаны 17 и 18 в зависимости от требуемого потребителю режима работы и возобновляют подачу гелия потребителю по трубопроводу 23. После окончания подачи гелия потребителю закрывают электропневмоклапаны 17 и 18 и производят слив жидкого азота из ванны криостата через запорный вентиль 7, включают подачу газообразного азота от системы подачи азота, который нагревают до температуры 100°С в электронагревателе 12 и по трубопроводу 22 подают в фильтр 10, а затем сбрасывают в окружающую среду до полного удаления вымороженных примесей из фильтрующих элементов фильтра 10.

Таким образом, заявленное устройство для охлаждения и очистки газообразного гелия обеспечивает подачу потребителю гелия как с положительной, так и с отрицательной температурой, при этом обеспечивается возможность заполнения бортовых баллонов в отсеках ракетоносителей в широком диапазоне температур окружающей среды - от минус 40°С до плюс 50°С, и в баках с низкокипящими компонентами топлива, например жидкого кислорода при температуре минус 183°С.

Заявленное устройство будет использовано как при разработке новых систем заправки гелием бортовых баллонов ракетоносителей, так и при модернизации существующих систем заправки гелием ракетоносителей серии «Союз-2» на стартовых комплексах.

Скачать патент РФ Официальная публикация
патента РФ № 2477429

patent-2477429.pdf

Класс F25J3/08 отделение газовых примесей от газов или газовых смесей

способ охлаждения влажного природного газа и устройство для его осуществления -  патент 2528209 (10.09.2014)
установка подготовки углеводородного газа -  патент 2527922 (10.09.2014)
устройство для компримирования и осушки газа -  патент 2516675 (20.05.2014)
установка для подготовки газа с удаленным терминалом управления и использованием программного комплекса автоматического управления технологическим процессом -  патент 2506505 (10.02.2014)
способ дегидратации газа, содержащего co2 -  патент 2505763 (27.01.2014)
теплообменный аппарат для ожижения смешанных паров -  патент 2474778 (10.02.2013)
установка очистки сжиженных углеводородных газов от кислых компонентов -  патент 2469774 (20.12.2012)
способ получения сжиженных углеводородных газов и установка для его осуществления -  патент 2463534 (10.10.2012)
способ и система удаления h2s из потока природного газа -  патент 2462295 (27.09.2012)
способ подготовки углеводородного газа -  патент 2460759 (10.09.2012)
Наверх