Поиск патентов
ПАТЕНТНЫЙ ПОИСК В РФ

полимерная композиция

Классы МПК:C08L55/02 АБС (Акролеин-Бутадиен-Стирол) полимеры
C08L9/02 сополимеры с акрилонитрилом
C08L27/06 гомополимеры или сополимеры винилхлорида
C08K3/22 металлов
C08K3/06 сера
C08K13/02 органические и неорганические компоненты
B82B1/00 Наноструктуры
Автор(ы):, , ,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (RU)
Приоритеты:
подача заявки:
2011-05-10
публикация патента:

Изобретение относится к композиционным полимерным материалам на основе бутадиен-акрилонитрильного эластомера с высокой технологичностью переработки, который может найти применение при получении вулканизатов с повышенной прочностью при растяжении, сопротивлением раздиру, хорошими динамическими показателями и сопротивлением тепловому старению. Осуществляют модификацию полимерной композиции на основе бутадиен-акрилонитрильного эластомера (СКН-26) и поливинилхлорида (ПВХ) наночастицами оксида алюминия. Полимерная композиция на основе бутадиен-акрилонитрильного эластомера (СКН-26) и поливинилхлорида (ПВХ) содержит серу, каптакс, тиурам, стеарин и оксид алюминия. Техническим результатом изобретения является повышение эксплуатационных параметров: прочности, динамических механических характеристик. 1 табл., 7 ил.

Рисунки к патенту РФ 2477297

полимерная композиция, патент № 2477297 полимерная композиция, патент № 2477297 полимерная композиция, патент № 2477297 полимерная композиция, патент № 2477297 полимерная композиция, патент № 2477297 полимерная композиция, патент № 2477297 полимерная композиция, патент № 2477297

Изобретение относится к композиционным полимерным материалам на основе бутадиен-акрилонитрильного эластомера с высокой технологичностью переработки, который может найти применение при получении вулканизатов с повышенной прочностью при растяжении, сопротивлением раздиру, хорошими динамическими показателями и сопротивлением тепловому старению.

Известна резиновая смесь по патенту № 2096429 на основе бутадиен-нитрильного каучука, включающая серу, каптакс, оксид цинка и технический углерод, содержащая в качестве модификатора 2-стирилбензимидазол при следующем соотношении компонентов, мас.ч.: бутадиен-нитрильный каучук СКН-26 - 100; сера 1,4-1,6; каптакс 0,7-0;9; оксид цинка 4,6-5,2; технический углерод 40-70; 2-стирилбензимидазол 0,2-2,7.

Известна резиновая смесь по патенту № 2096430, включающая бутадиен-нитрильный каучук, серу, каптакс, оксид цинка и технический углерод, дополнительно содержит в качестве модификатора производное бензимидазола при следующем соотношении компонентов, мас.ч.: бутадиен-нитрильный каучук 100; сера 1,4-1,6; каптакс 0,7-0,9; оксид цинка 4,6-5,2; технический углерод 40-70; производное бензимидазола 0,85-4,25.

Известна резиновая смесь по патенту № 2086581 на основе бутадиен-нитрильного каучука, включающая мас.ч.: бутадиен-нитрильный каучук 100, сера 1,4-1,6 каптакс 0,7-0,9, оксид цинка 4,6-5,2, технический углерод 40-70, 2,2-бис(винил)бензимидазол 0,58-2,88, для получения вулканизатов с повышенной прочностью при растяжении, сопротивлением раздиру, хорошими динамическими показателями и сопротивлением тепловому старению.

Недостатками указанных смесей является недостаточная прочность и низкие модули упругости, а также применение дорогостоящего наполнителя.

Наиболее близким техническим решением, принятым за прототип, является резиновая смесь по патенту № 2086582 на основе бутадиен-нитрильного каучука, которая содержит, мас.ч.: бутадиен-нитрильный каучук 100, сера 1,4-1,6, каптакс 0,7-0,9, оксид цинка 4,6-5,2, технический углерод 40-70, бензимидазольное производное абиетиновой кислоты 1,8-5,4.

Недостатками указанной смеси является недостаточная прочность и низкие модули упругости, а также применение дорогостоящего наполнителя.

Задача изобретения заключается в повышении эксплуатационных параметров: прочности, динамических механических характеристик, долговечности, путем модификации смесей на основе эластомеров наночастицами оксида алюминия.

Поставленная задача решается модификацией полимерной композиции на основе бутадиен-акрилонитрильного эластомера (СКН-26) и поливинилхлорида (ПВХ) наночастицами оксида алюминия от 0,1-5,37 мас.ч. Полимерная композиция на основе бутадиен-акрилонитрильного эластомера (СКН-26) и поливинилхлорида (ПВХ) содержит серу, каптакс, тиурам, стеарин и оксид алюминия при следующем соотношении компонентов в мас.ч.: СКН-26 - 80; ПВХ - 20; Сера - 1,8; Каптакс - 1; Тиурам - 0,2; Стеарин - 0,2; Оксид алюминия - 0,1-5,37.

В основу полимерной композиции входят широко используемые в промышленности полимеры: бутадиен-акрилонитрильный эластомер (СКН-26) и поливинилхлорид (ПВХ). Наполнителем служат наночастицы оксида алюминия с удельной адсорбционной поверхностью 100 м2/г, средним размером частиц 30-50 нм.

Для определения концентрации наночастиц оксида алюминия нами выведена формула:

с=0,1еn,

где с - содержание оксида алюминия в смеси, мас.ч., n=0, 1, 2, 3, 4, е=2,7.

Таким образом, содержание оксида алюминия в смеси СКН-26+ПВХ составляет: в 1 композиции - 0,1 мас.ч.; во второй - 0,271 мас.ч.; в третьей - 0,73 мас.ч.; в четвертой - 1,99 мас.ч.; в пятой - 5,37 мас.ч. Такой экспоненциальный подход позволяет более точно контролировать область малых добавок, в отличие от линейного распределения концентрации наполнителя.

Смешение полимеров с наполнителями осуществляется на лабораторных вальцах в расплаве полимеров при 393±5 К, время смешения 10 мин. Объекты исследования готовятся прессованием под вулканизационном прессом при 423°±5 К и выдержке с давлением 100 атм в течение 10 мин.

Распределение частиц оксида алюминия изучается с помощью оптического микроскопа LATIMET в проходящем свете на тонких выпрессовках с толщиной 6-8 мкм. Степень увеличения устанавливается масштабированием по снимкам микрометрической линейки, полученных при тех же условиях, что и снимки смесей полимеров. Состояние поверхности объектов исследования было изучено сканирующим зондовым микроскопом Nanoeducator NT-MDT.

Прочность и деформация при растяжении, модуль упругости, определяется при 293° К на разрывной машине РМ-122 при скорости растяжения 100 мм/мин. Диэлектрические характеристики изучались резонансным методом, суть которого заключается в измерении добротности измерительного контура и емкости включенного в этот контур конденсатора с исследуемым образцом при резонансе с параллельным контуром, содержащим конденсатор известной емкости. Измерения велись при частоте 50 кГц. Погрешность измерения диэлектрической проницаемости и тангенса угла диэлектрических потерь составили 5% и 3% соответственно. Поверхностное натяжение измерялось методом «большой капли».

Обнаружено, что добавки до 2 мас.ч. оксида алюминия в смесь СКН-26+ПВХ существенно изменяют их эксплуатационные характеристики. Так, например, при введении 0,271 мас.ч. оксида алюминия в композит СКН-26+ПВХ наблюдается увеличение показателя относительной диэлектрической проницаемости почти в 2 раза по сравнению с исходной смесью.

Исследование прочностных характеристик композиции СКН-26+ПВХ показало, что добавление наноразмерного наполнителя оксида алюминия до 0,1 мас.ч. наблюдается повышение эластичности (по значению деформации при заданном напряжении). Различия в коэффициентах термического расширения полимера и наполнителя приводят к тому, что в результате охлаждения системы после смешения на границе раздела возникают перенапряжения или даже образуются вакуоли. При нагружении наполненных образцов наблюдается дополнительное растяжение в месте разрыва и ориентация, приводящая к упрочнению.

Таким образом, усиливающее действие наполнителей в полимерных композициях определяется рядом факторов, из которых основными являются размеры (дисперсность) и форма частиц, характер их поверхности, а также их способность смачивать каучук.

Необходимо отметить также, что наблюдается оптимум, при котором эффект от модификации наиболее заметен, дальнейшее наполнение приводит к ухудшению характеристик материала. Данный эффект связан с процессами агрегации частиц в смеси во время отверждения.

Особенности поверхности и морфология наполненных наночастицами смесей полимеров отражаются на их макроскопических характеристиках.

Таблица
Зависимость модуля Юнга композиции СКН-26+ПВХ (80 мас.ч.+20 мас.ч.) от концентрации оксида алюминия
СКН-26+ПВХполимерная композиция, патент № 2477297 полимерная композиция, патент № 2477297 полимерная композиция, патент № 2477297 полимерная композиция, патент № 2477297 полимерная композиция, патент № 2477297 полимерная композиция, патент № 2477297
80 мас.ч.+20 мас.ч.+ полимерная композиция, патент № 2477297 полимерная композиция, патент № 2477297 полимерная композиция, патент № 2477297 полимерная композиция, патент № 2477297 полимерная композиция, патент № 2477297 полимерная композиция, патент № 2477297
+оксид алюминия0 0,10,271 0,731,99 5,37
(мас.ч.) полимерная композиция, патент № 2477297 полимерная композиция, патент № 2477297 полимерная композиция, патент № 2477297 полимерная композиция, патент № 2477297 полимерная композиция, патент № 2477297 полимерная композиция, патент № 2477297
E оксид алюминия, н/м2 105·106 405·106 324,5·106 327,5·106 475,5·106 428,6·106

Из таблицы видно, что добавление оксида алюминия в массу эластомера СКН-26+ПВХ существенно повышает значение модуля упругости. Модификация данной смеси небольшим количеством наноразмерных частиц оксида алюминия (0,1 мас.ч.) в 4 раза повышает значение модуля упругости, соответственно, небольшие добавки оксида алюминия существенно меняют значения модуля упругости.

На фиг.1 даны микрофотографии структуры смеси СКН-26 с ПВХ при соотношении компонентов 80 мас.ч.+20 мас.ч. с содержанием оксида алюминия: а) 0 мас.ч.; б) 0,1 мас.ч.; в) 0,271 мас.ч.; г) 0,73 мас.ч.; д) 1,99 мас.ч.; е) 5,37 мас.ч. при увеличении в 500 раз.

Исследование состояния поверхности смеси СКН-26 с ПВХ при соотношении компонентов 80 мас.ч.+20 мас.ч., модифицированной наночастицами оксида алюминия показало, что малое изменение концентрации частиц оксида алюминия существенно влияет на состояние поверхности смеси.

На фиг.2 представлены данные АСМ для поверхности смеси полимеров СКН-26 с ПВХ при соотношении компонентов:

а) 80 мас.ч.+20 мас.ч.+0 мас.ч. оксида алюминия, часть данной поверхности размером 30×30 мкм: видны частицы размерами 2,2х2 мкм и высотой 0,4-0,8 мкм.

б) 80 мас.ч.+20 мас.ч.+0, мас.ч. оксида алюминия, часть данной поверхности размером 30×30 мкм: видны частицы размерами от 9,6 до 21,3 мкм и высотой от 2 до 3.9 мкм.

в) 80 мас.ч.+20 мас.ч. +0,271 мас.ч. оксида алюминия, часть данной поверхности размером 30×30 мкм: видны частицы размерами от 10,3 до 18,9 мкм и высотой от 3,7 до 4,2 мкм.

г) 80 мас.ч.+20 мас.ч. +0,73 мас.ч. оксида алюминия, часть данной поверхности размером 30×30 мкм: виден пик размерами от 5,8 до 10,27 мкм, высотой 3,1 мкм.

д) 80 мас.ч.+20 мас.ч.+1,99 мас.ч. оксида алюминия по массе, часть данной поверхности размером 30×30 мкм: видны множество маленьких пиков, высотой от 2 до 2,3 мкм и диаметром от 2,6 до 5,8 мкм.

е) 80 мас.ч.+20 мас.ч.+5,37 мас.ч. оксида алюминия по массе, часть данной поверхности размером 30×30 мкм: видны множество пиков высотой от 3.3 до 4 мкм и диаметром от 7.5 до 19,8 мкм.

На фиг.3 изображена зависимость разрывного напряжения полимерная композиция, патент № 2477297 р от концентрации оксида алюминия С для СКН-26 (100 мас.ч.).

На фиг.4 - зависимость полимерная композиция, патент № 2477297 р СКН-26 (80 мас.ч.)+ПВХ (20 мас.ч.) от концентрации наноразмерных частиц оксида алюминия.

Сравнение зависимости полимерная композиция, патент № 2477297 р от концентрации наночастиц оксида алюминия, в приведенных на фиг.3 и 4, свидетельствует о том, что модификация эластомера жесткоцепным полимером с наночастицами оксида алюминия существенно повышает не только значения модуля упругости, но и значения разрывного напряжения при растяжении.

На фиг.5 изображена зависимость поверхностного натяжения (полимерная композиция, патент № 2477297 ) СКН-26 от концентрации оксида алюминия.

На фиг.6 - зависимость поверхностного натяжения СКН-26(80)+ПВХ(20) от концентрации оксида алюминия: Ряд 1 - твердое тело - жидкость; Ряд 2 - твердое тело - газ.

На фиг.7 - зависимости тангенса угла диэлектрических потерь смеси полимеров СКН-26(80 мас.ч.)+ПВХ(20 мас.ч.) от концентрации наноразмерных частиц оксида алюминия.

На концентрационных зависимостях прочности (фиг.4), поверхностного натяжения (фиг.5) и диэлектрических параметров (фиг.6, 7) наблюдаются экстремумы в области концентрации наночастиц 0,7-1 мас.ч.

Технический результат изобретения заключается в повышении эксплуатационных параметров до 30% и более при введении нанодобавок оксида алюминия в исходные полимерные композиционные материалы.

Композиты на основе СКН и ПВХ находят широкое применение в производстве кабельной продукции, в обувной промышленности. При этом важными физическими параметрами, характеризующими эти изделия, являются такие величины, как прочность, работа адгезии, диэлектрическая проницаемость, модуль упругости, механические и диэлектрические потери.

Литература

1. Кулезнев В.Н. Смеси полимеров. М.: Химия, 1980. 304 с.

2. Догадкин Б.А., Лукомская А.И. В кн.: Труды III конференции по коллоидной химии. М.: Из-во АН СССР, 1956, с.363-370.

3. Липатов Ю.С.Физическая химия наполненных полимеров. М.: Химия, 1977. 304 с.

4. Бартенев Г.М., Зеленев Ю.В. Физика и механика полимеров. М.: Высшая школа. 1983. 391 с.

5. Ребиндер П.А. Физико-химическая механика дисперсных структур. М.: Наука, 1966, с.3-16.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Полимерная композиция на основе бутадиен-акрилонитрильного эластомера, содержащая серу, каптакс и оксид алюминия, отличающаяся тем, что она дополнительно содержит поливинилхлорид, тиурам и стеарин при следующем соотношении компонентов, мас.ч.:

бутадиен-акрилонитрильный эластомер 80
поливинилхлорид 20
сера 1,8
каптакс 1
тиурам 0,2
стеарин 0,2
оксид алюминия 0,1-5,37


причем модификацию полимерной композиции проводят наночастицами оксида алюминия со средним размером частиц 30-50 нм, концентрация которых вычисляется по следующей формуле:

с=0,1еn,

где с - содержание оксида алюминия в смеси, мас.ч., n=0, 1, 2, 3, 4, е=2,7.


Скачать патент РФ Официальная публикация
патента РФ № 2477297

patent-2477297.pdf
Патентный поиск по классам МПК-8:

Класс C08L55/02 АБС (Акролеин-Бутадиен-Стирол) полимеры

Патенты РФ в классе C08L55/02:
стабилизаторы для полимеров, содержащих бром алифатического присоединения -  патент 2528677 (20.09.2014)
сополимер малеимида, процесс получения указанного сополимера и термостойкие композиции смол, содержащие указанный сополимер -  патент 2513100 (20.04.2014)
усиленный каучуком винилароматический (со) полимер, обладающий оптимальным сочетанием физико-механических свойств и высокого блеска -  патент 2506278 (10.02.2014)
гидроксиарилфункционализованные полимеры -  патент 2497835 (10.11.2013)
функционализованный полимер и способы его получения и применения -  патент 2492189 (10.09.2013)
бромированные полимеры в качестве пламягасителей и содержащие их полимерные системы -  патент 2483088 (27.05.2013)
композиция термопластичной смолы с низким глянцем и мягкой на ощупь поверхностью и формованное изделие из нее -  патент 2471828 (10.01.2013)
термопластичная композиция с низкой светоотражающей способностью и хорошими показателями ударной прочности при низкой температуре -  патент 2458088 (10.08.2012)
ударопрочная огнестойкая термопластичная формовочная композиция -  патент 2448993 (27.04.2012)
огнезащитная ударостойкая термопластичная формовочная композиция -  патент 2439105 (10.01.2012)

Класс C08L9/02 сополимеры с акрилонитрилом

Класс C08L27/06 гомополимеры или сополимеры винилхлорида

Патенты РФ в классе C08L27/06:
стабилизирующая для галогенированных полимеров, не содержащая тяжелых металлов -  патент 2528994 (20.09.2014)
способ получения высоконаполненной древесно-полимерной композиции на основе поливинилхлорида -  патент 2527468 (27.08.2014)
способ получения экструзионной окрашенной поливинилхлоридной композиции и экструзионная окрашенная поливинилхлоридная композиция строительного назначения -  патент 2524386 (27.07.2014)
полимерная композиция для кабельного пластика -  патент 2520097 (20.06.2014)
способ изготовления профиля из пвх для оконных и дверных блоков с содержанием ионов серебра, обладающих антибактериальными свойствами -  патент 2508988 (10.03.2014)
способ изготовления профиля из пвх для оконных и дверных блоков с содержанием ионов серебра, обладающих антибактериальными свойствами -  патент 2508197 (27.02.2014)
композиционный полимерный материал для палубных и напольных покрытий -  патент 2507223 (20.02.2014)
4-(2,3-эпоксипропокси)-4'-(2,2-дицианоэтенил)азобензол, проявляющий свойства светотермостабилизатора поливинилхлорида -  патент 2502728 (27.12.2013)
электроизоляционная полимерная композиция -  патент 2501108 (10.12.2013)
поливиниловый спирт в качестве состабилизатора пвх -  патент 2500698 (10.12.2013)

Класс C08K3/22 металлов

Патенты РФ в классе C08K3/22:
композиция на основе жидкого низкомолекулярного силоксанового каучука для покрытия огнестойкого защитного материала -  патент 2529227 (27.09.2014)
тонкодисперсная органическая суспензия металл/углеродного нанокомопозита и способ ее изготовления -  патент 2527218 (27.08.2014)
морозостойкая резиновая смесь -  патент 2522610 (20.07.2014)
технологическая добавка для термопластичных полиуретанов -  патент 2520441 (27.06.2014)
полимерная композиция -  патент 2519402 (10.06.2014)
способ получения термопластичной эластомерной композиции -  патент 2519401 (10.06.2014)
керамообразующая резиновая смесь (варианты) -  патент 2519379 (10.06.2014)
формованные абразивные частицы с низким коэффициентом округлости -  патент 2517526 (27.05.2014)
резиновая смесь на основе бутадиен-метилстирольного каучука -  патент 2516644 (20.05.2014)
красящее многофункциональное защитное покрытие -  патент 2514940 (10.05.2014)

Класс C08K3/06 сера

Класс C08K13/02 органические и неорганические компоненты

Класс B82B1/00 Наноструктуры

Патенты РФ в классе B82B1/00:
многослойный нетканый материал с полиамидными нановолокнами -  патент 2529829 (27.09.2014)
материал заменителя костной ткани -  патент 2529802 (27.09.2014)
нанокомпозитный материал с сегнетоэлектрическими характеристиками -  патент 2529682 (27.09.2014)
катализатор циклизации нормальных углеводородов и способ его получения (варианты) -  патент 2529680 (27.09.2014)
способ определения направления перемещения движущихся объектов от взаимодействия поверхностно-активного вещества со слоем жидкости над дисперсным материалом -  патент 2529657 (27.09.2014)
способ формирования наноразмерных структур -  патент 2529458 (27.09.2014)
способ бесконтактного определения усиления локального электростатического поля и работы выхода в нано или микроструктурных эмиттерах -  патент 2529452 (27.09.2014)
способ изготовления стекловидной композиции -  патент 2529443 (27.09.2014)
комбинированный регенеративный теплообменник -  патент 2529285 (27.09.2014)
способ изготовления тонкопленочного органического покрытия -  патент 2529216 (27.09.2014)

Наверх