способ определения золота в отходах производства элементов электронной техники

Классы МПК:G01N21/31 путем исследования сравнительного воздействия материала на волновые характеристики особых элементов или молекул, например абсорбционная спектрометрия
G01N21/72 с использованием горелок
G01J3/42 абсорбционная спектрометрия; двулучевая спектрометрия; мерцающая спектрометрия; отражательная спектрометрия
Автор(ы):
Патентообладатель(и):Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" - ФГУП "РФЯЦ-ВНИИЭФ" (RU)
Приоритеты:
подача заявки:
2011-08-03
публикация патента:

Изобретение относится к способу определения золота в отходах производства элементов электронной техники методом атомно-абсорбционной спектрометрии (ААС). Способ включает приготовление и введение анализируемой пробы в виде раствора с помощью пневматической распылительной системы через гибкий капилляр в пламя горелки атомно-абсорбционного спектрометра с последующей математической обработкой сигналов абсорбции для определения концентрации анализируемого элемента. Причем способ характеризуется тем, что перед внесением очередной пробы внутренние полости распылительной системы, горелки и щели горелки очищают пропусканием насыщенного водного раствора смеси йодида калия и элементарного йода (KJ+J2), затем анализируемую пробу вводят в высокотемпературное пламя ацетилен-динитрооксид для проведения процесса атомизации с одновременным введением в анализируемую пробу и градуировочные растворы легколетучих, термически неустойчивых соединений - испаряющих добавок в виде солей щелочных металлов или солей аммония, обладающих низкой по сравнению с золотом температурой парообразования. Использование настоящего способа позволяет повысить воспроизводимость и правильность анализа за счет повышения точностных характеристик градуировочной функции, снизить эффект памяти от предыдущей пробы. 2 пр., 3 табл., 2 ил. способ определения золота в отходах производства элементов электронной   техники, патент № 2464546

способ определения золота в отходах производства элементов электронной   техники, патент № 2464546 способ определения золота в отходах производства элементов электронной   техники, патент № 2464546

Формула изобретения

Способ определения золота в отходах производства элементов электронной техники методом атомно-абсорбционной спектрометрии (ААС), включающий приготовление и введение анализируемой пробы в виде раствора с помощью пневматической распылительной системы через гибкий капилляр в пламя горелки атомно-абсорбционного спектрометра с последующей математической обработкой сигналов абсорбции для определения концентрации анализируемого элемента, отличающийся тем, что перед внесением очередной пробы внутренние полости распылительной системы, горелки и щели горелки очищают пропусканием насыщенного водного раствора смеси йодида калия и элементарного йода (KJ+J 2), затем анализируемую пробу вводят в высокотемпературное пламя ацетилен-динитрооксид для проведения процесса атомизации с одновременным введением в анализируемую пробу и градуировочные растворы легколетучих, термически неустойчивых соединений испаряющих добавок в виде солей щелочных металлов или солей аммония, обладающих низкой по сравнению с золотом температурой парообразования.

Описание изобретения к патенту

Предлагаемое изобретение относится к области аналитической химии, конкретно к методам пламенного атомно-абсорбционного анализа золота в разнообразных объектах, и может быть использовано для количественного определения золота в жидких технологических отходах производства элементов электронной техники.

Известен гравиметрический способ определения золота, основанный на его восстановлении до металла из раствора солянокислым гидразином. Навеску пробы растворяют при нагревании в царской водке, удаляют выпариванием нитрат-ионы в присутствии соляной кислоты, проводят восстановление золота раствором гидразина гидрохлорида в среде 1,2 М соляной кислоты. Образующийся осадок золота отфильтровывают через двойной бумажный фильтр, промывают горячей водой, фильтр с осадком помещают в предварительно взвешенный фарфоровый тигель, прокаливают при температуре 900°С до постоянной массы и взвешивают (ГОСТ 27973.0-88 «Определение массовой доли золота»).

Недостатками известного способа являются длительность и трудоемкость стадии пробоподготовки. Поэтому требуется более экспрессная методика, когда речь идет о контроле содержания золота в большом количестве проб технологических отходов.

Известен в качестве прототипа заявляемого эффективный способ определения благородных металлов, в частности золота, в рудах, продуктах их переработки и катализаторах - объектах, характеризующихся сложным матричным составом, методом атомно-абсорбционной спектрометрии с введением анализируемой пробы в пламя ацетилен-воздух и устранением влияния матричного состава отделением золота путем концентрирования на сорбенте ПОЛИОРГС-IV при содержании золота в диапазоне концентраций от 10-7 до 10-4 % (ЖАХ. том 49, № 2, стр.199, 1994 г.), либо напрямую, установив отсутствие значимой систематической погрешности анализа, обусловленной влиянием компонентов матрицы, при содержании золота на уровне десятков процентов.

В отдельных случаях, когда пробы являются объектами сложного, переменного, а зачастую изначально неизвестного матричного состава и имеет место вероятность проявления матричных помех, используют более высокотемпературное пламя ацетилен-динитрооксид, которое устраняет в значительной степени химические помехи со стороны матрицы в конденсированной и газовой фазе, однако может приводить к возникновению так называемых структурных помех при определении благородных металлов, в частности золота, проявляющихся в образовании в ходе термического испарения поступающих в пламя капель аэрозоля восстановленного до элементарного состояния золота, образующего небольшие труднолетучие многоатомные частицы (кластеры) свободного металла с высокой температурой испарения (Тисп - 2847°С), которые не успевают полностью испариться и атомизироваться в пламени, оседают, накапливаясь, на внутренних поверхностях блоков ввода пробы и атомизации, что приводит к появлению эффекта памяти от предыдущей пробы и ухудшает воспроизводимость и правильность результатов атомно-абсорбционного анализа сложных проб.

Задачей автора изобретения является разработка способа анализа жидких отходов производства элементов электронной техники - объектов, характеризующихся сложным, переменным матричным составом с содержанием золота от 0,002 г/дм3 до 30 г/дм3, обеспечивающего достоверное количественное атомно-абсорбционное определение золота в указанных смесях.

Новый технический результат, обеспечиваемый при использовании предлагаемого способа, заключается в повышении воспроизводимости и правильности анализа за счет повышения точностных характеристик градуировочной функции, снижения эффекта памяти от предыдущей пробы в отходах производства элементов электронной техники - объектах, в которых имеет место вероятность проявления матричных помех.

Указанные задача и новый технический результат обеспечиваются тем, что в известном способе определения золота в рудах, продуктах их переработки и катализаторах методом атомно-абсорбционной спектрометрии, включающем приготовление и введение анализируемой пробы в виде раствора с помощью пневматической распылительной системы через гибкий капилляр, раствор вводят в пламя ацетилен-воздух с последующей математической обработкой сигналов абсорбции для определения концентрации анализируемого элемента, согласно изобретению перед внесением очередной пробы внутренние полости распылительной системы, горелки и щели горелки очищают пропусканием насыщенного водного раствора смеси иодида калия и элементарного иода (KJ+J2 ), анализируемую пробу вводят в высокотемпературное пламя ацетилен-динигрооксид для проведения процесса атомизации пробы с одновременным введением в анализируемую пробу и градуировочные растворы легколетучих, термически неустойчивых соединений, так называемых испаряющих добавок, в виде солей щелочных металлов или солей аммония, обладающих низкой по сравнению с золотом температурой парообразования.

Предлагаемый способ поясняется следующим образом.

Анализируемые образцы представляют собой технологические отходы, образующиеся после очистки стальных деталей установки вакуумного напыления золота методом химического травления концентрированным раствором смеси кислот НNО3+НСl (1:3) («царская водка»). Получаемые смеси состоят из растворенных золота и компонентов стали.

Для проведения атомно-абсорбционного анализа указанных смесей первоначально готовят анализируемые пробы путем их разбавления бидистиллированной водой с одновременным введением 2,5% по объему раствора «царской водки» и испаряющей добавки в виде сульфата натрия из расчета 2 мг/мл. В градуировочные растворы, также подкисленные 2,5% по объему раствором «царской водки» и содержащие сульфат натрия из расчета 2 мг/мл, вводят только определяемое золото в разных концентрациях, установив на искусственных модельных смесях отсутствие значимой систематической погрешности, обусловленной влиянием компонентов матрицы, при проведении атомно-абсорбционного анализа в пламени ацетилен-динитрооксид. Затем проводят процедуру измерений: в пламя горелки ацетилен-динитрооксид вводят фоновый раствор, стандартные растворы для построения градуировочного графика и растворы анализируемых проб, регистрируют сигналы абсорбции, математически обрабатывают с помощью компьютерного программного обеспечения и определяют концентрацию золота в пробе. При последующем анализе производственных проб перед проведением измерений в пламя горелки вносят насыщенный водный раствор смеси иодида калия и элементарного иода (KJ+J2) для устранения осевшего золота растворением в смеси указанных компонентов, дожиганием в пламени горелки и удалением во внешнюю среду.

Атомно-абсорбционная спектрометрия является относительным методом и включает в себя построение градуировочной зависимости (градуировка), нахождение с ее помощью результатов измерений и оценку возникающих при этом погрешностей. Для осуществления химического анализа необходимо установить вид градуировочной зависимости и ее точностные характеристики.

В заявляемом способе градуировку прибора проводят методом градуировочного графика, градуировочную зависимость аппроксимируют линейной функцией. Для получения метрологически обоснованных точностных характеристик градуировочной зависимости проводят градуировку спектрометра, используя для сопоставления два варианта градуировочных растворов: подкисленные раствором «царской водки», не содержащие испаряющую добавку в виде сульфата натрия (вариант I), и аналогичные растворы, содержащие сульфат натрия (вариант II).

При градуировке спектрометра по шести сериям градуировочных растворов варианта I относительное среднеквадратическое отклонение экспериментальных точек от аппроксимирующей градуировочной зависимости (способ определения золота в отходах производства элементов электронной   техники, патент № 2464546 Кград, %) составляет 4,2; 5,3; 3,8; 3,6; 2,6; 4,1, наблюдается плохая воспроизводимость результатов анализа рабочей пробы (таблица 3).

На фиг.1 приведены градуировочные графики, построенные по шести сериям градуировочных растворов варианта I, при проведении измерений в пламени ацетилен-динитрооксид в разное время, в таблице 1 представлены уравнения аппроксимации и точностные характеристики градуировочных зависимостей.

Высокое значение относительного среднеквадратического отклонения экспериментальных точек от аппроксимирующей градуировочной зависимости (фиг.1) связано с индивидуальными свойствами золота и химическими процессами, происходящими в пламенном атомизаторе. При введении градуировочного раствора (раствора пробы) в пламя горелки ацетилен-динитрооксид в виде жидкого мелкодисперсного аэрозоля соли золота в ходе термического испарения поступающих капель аэрозоля восстанавливаются до элементарного состояния, образуя небольшие труднолетучие частицы свободного металла, которые не успевают полностью испариться и атомизироваться в пламени, что приводит к нарушению идентичности состава анализируемого раствора и атомных паров в поглощающем слое пламени и появлению значимой неисключаемой систематической погрешности результата анализа. Частицы золота осаждаются, накапливаясь в ходе проведения многократных измерений, на внутренних и наружных поверхностях щели горелки и магнита, установленного на горелке, создавая эффект памяти, который проявляется в ходе проведения анализа. В виде отдельных «всплесков» осажденное золото испаряется и произвольно вносит вклад как в сигналы абсорбции золота растворов градуировки, так и рабочих проб. Наличие осажденного золота подтверждается регистрацией «импульсных» сигналов абсорбции при внесении в пламя в качестве раствора - индикатора растворителя золота - насыщенного водного раствора смеси иодида калия и элементарного иода (KJ+J2) перед введением очередного градуировочного раствора или раствора пробы. Методом атомной абсорбции установлено наличие золота в соскобах, снятых с поверхности магнита и щели горелки. Размер кристаллитов золота в соскобах, оцененный с помощью атомно-силовой микроскопии, составляет способ определения золота в отходах производства элементов электронной   техники, патент № 2464546 100 нм. Промывные и сливные воды, выходящие из блока ввода растворов в атомизатор, имеют фиолетовую окраску, которая свойственна частицам золота размером способ определения золота в отходах производства элементов электронной   техники, патент № 2464546 100 нм.

При градуировке прибора по семи сериям градуировочных растворов варианта II (фиг.2) относительное среднеквадратическое отклонение экспериментальных точек от аппроксимирующей градуировочной зависимости (способ определения золота в отходах производства элементов электронной   техники, патент № 2464546 Kград, %) составляет 0,9; 1,6; 1,4; 1,8; 1,2; 1,0; 1,5, что значительно ниже, чем погрешности варианта I.

На фиг.2 приведены градуировочные графики, построенные по семи сериям градуировочных растворов варианта II, при проведении измерений в пламени ацетилен-динитрооксид в разное время, в таблице 2 представлены уравнения аппроксимации и точностные характеристики градуировочных зависимостей.

Низкое значение относительного среднеквадратического отклонения экспериментальных точек от аппроксимирующей градуировочной зависимости (фиг.2) обусловлено воздействием испаряющей добавки в виде сульфата натрия (Na2SO4) на процесс атомизации золота. Сульфат натрия, являясь легколетучим, термически неустойчивым, обладающим низкой по сравнению с золотом температурой парообразования соединением, испаряется из аэрозоля в пламени при низкой температуре и тем самым снижает дисперсность сухих аэрозольных частиц соединений золота, приводит к взрывному разрушению кластеров металлического золота, увеличивает их площадь поверхности, что облегчает процесс испарения.

В результате наблюдается увеличение чувствительности определения золота (таблица 1 и 2) по сравнению с водными, подкисленными «царской водкой», растворами варианта I, проявление эффекта памяти становится незначительным, улучшается воспроизводимость и правильность результатов анализа (таблица 3).

Таким образом, при использовании предлагаемого способа обеспечивается улучшение воспроизводимости и правильности результатов анализа за счет повышения точностных характеристик градуировочной зависимости, значительного снижения эффекта памяти от предыдущей пробы при пламенном атомно-абсорбционном определении золота в отходах производства элементов электронной техники - объектах сложного, переменного матричного состава.

Возможность промышленного применения предлагаемого способа была подтверждена лабораторными испытаниями.

Пример 1. В лабораторных условиях был опробован предлагаемый способ с использованием для построения градуировочной зависимости градуировочных растворов, подкисленных «царской водкой», не содержащих испаряющей добавки в виде сульфата натрия (вариант I). Результаты испытаний по данному примеру с указанием уравнений линейной аппроксимации и точностных характеристик градуировочных зависимостей, построенных по шести сериям растворов варианта I, представлены в таблице 1.

Пример 2. В лабораторных условиях был опробован предлагаемый способ с использованием для построения градуировочной зависимости градуировочных растворов, подкисленных «царской водкой», содержащих испаряющую добавку в виде сульфата натрия (вариант II). Результаты испытаний по данному примеру с указанием уравнений линейной аппроксимации и точностных характеристик градуировочных зависимостей, построенных по семи сериям растворов варианта II, представлены в таблице 2.

Одновременно был проведен анализ производственных проб технологических отходов по описанным выше двум вариантам, результаты которого в сопоставлении с методом гравиметрического определения золота приведены в таблице 3.

Таблица 1
№ градуировочной зависимости (вариант I) Вид аппроксимирующей функции Относительное среднеквадратическое отклонение экспериментальных точек от аппроксимирующей зависимости, %
1Y=0,0032x+0,0009 ±4,2
2 Y=0,0030x+0,0012 ±5,3
3Y=0,0034x+0,0010 ±3,8
4 Y=0,0032x+0,0009 ±3,6
5Y=0,0032x+0,0006 ±2,6
6 Y=0,0035x+0,0017 ±4,1

Таблица 2
№ градуировочной зависимости (вариант II) Вид аппроксимирующей функции Относительное среднеквадратическое отклонение экспериментальных точек от аппроксимирующей зависимости, %
1Y=0,0044x+0,0003 ±0,9
2 Y=0,0042x+0,0006 ±1,6
3Y=0,0041x+0,000002 ±1,4
4 Y=0,0044x+0,0008 ±1,8
5Y=0,0041x+0,00002 ±1,2
6 Y=0,0043x+0,0002 ±1,0
7Y=0,0042x+0,000005 ±1,5

способ определения золота в отходах производства элементов электронной   техники, патент № 2464546

Класс G01N21/31 путем исследования сравнительного воздействия материала на волновые характеристики особых элементов или молекул, например абсорбционная спектрометрия

ртутный монитор -  патент 2521719 (10.07.2014)
способ диагностики заболевания миокарда -  патент 2519097 (10.06.2014)
способ определения концентраций хромофоров биологической ткани -  патент 2506567 (10.02.2014)
способ прогнозирования будущей характеристики -  патент 2503948 (10.01.2014)
атомно-абсорбционный спектрометр, основанный на эффекте зеемана -  патент 2497101 (27.10.2013)
газоанализатор для измерения содержания ртути в газе -  патент 2493553 (20.09.2013)
технологическая машина -  патент 2484929 (20.06.2013)
устройство неинвазивного определения химических компонентов крови (варианты) -  патент 2478197 (27.03.2013)
устройство для централизованного управления измерениями и данными, относящимися к потокам жидкости и газа, необходимым для работы двигателя внутреннего сгорания -  патент 2471172 (27.12.2012)
диодное лазерное устройство для неинвазивного измерения гликемии -  патент 2468356 (27.11.2012)

Класс G01N21/72 с использованием горелок

способ детектирования интенсивности излучения газообразной смеси продуктов реакции при помощи фотокамер, применение способа и предназначенное для этого устройство -  патент 2466364 (10.11.2012)
способ определения концентрации элементов в растворе -  патент 2364856 (20.08.2009)
способ элементного инструментального анализа твердых материалов -  патент 2280856 (27.07.2006)
способ определения ртути в органических средах -  патент 2110060 (27.04.1998)
спектральный анализатор -  патент 2096763 (20.11.1997)
устройство для разложения высокочистого вещества при анализе микропримесей -  патент 2078332 (27.04.1997)
способ определения минеральных форм и гранулометрического состава частиц минералов благородных металлов в порошковых пробах руд -  патент 2057324 (27.03.1996)
распылитель пробы -  патент 2039970 (20.07.1995)
устройство для атомно-абсорбционного анализа -  патент 2027166 (20.01.1995)
способ атомно-абсорбционного определения скандия в растворах сложного солевого состава -  патент 2018807 (30.08.1994)

Класс G01J3/42 абсорбционная спектрометрия; двулучевая спектрометрия; мерцающая спектрометрия; отражательная спектрометрия

спектрометр на основе поверхностного плазмонного резонанса -  патент 2500993 (10.12.2013)
атомно-абсорбционный спектрометр, основанный на эффекте зеемана -  патент 2497101 (27.10.2013)
устройство для спектрального анализа -  патент 2480718 (27.04.2013)
инфракрасный амплитудно-фазовый плазмонный спектрометр -  патент 2477841 (20.03.2013)
устройство для измерения длины распространения монохроматических поверхностных электромагнитных волн инфракрасного диапазона -  патент 2470269 (20.12.2012)
электротермический атомизатор для определения благородных металлов -  патент 2463582 (10.10.2012)
спектральная газоразрядная лампа для атомной абсорбции -  патент 2455621 (10.07.2012)
способ диэлектрической спектроскопии тонкого слоя на поверхности твердого тела в инфракрасном диапазоне -  патент 2432579 (27.10.2011)
способ определения коэффициента затухания поверхностной электромагнитной волны инфракрасного диапазона за время одного импульса излучения -  патент 2400714 (27.09.2010)
устройство для определения коэффициента поглощения поверхностных электромагнитных волн инфракрасного диапазона -  патент 2380665 (27.01.2010)
Наверх