способ получения серобитума

Классы МПК:C08L95/00 Композиции битуминозных материалов, например асфальта, гудрона или вара
C08K3/06 сера
Автор(ы):, ,
Патентообладатель(и):Общество с ограниченной ответственностью "ВСК-2000" (ООО "ВСК-2000") (RU)
Приоритеты:
подача заявки:
2010-12-17
публикация патента:

Изобретение относится к дорожному строительству, а именно к способу получения серобитума для производства сероасфальтобетона. Способ включает перемешивание при нагревании расплавленных битума, серы, а также активирующей добавки. Для активирования реакционной смеси используют амины в количестве 0,3-3,0 мас.% по отношению к сере. Реакцию ведут при температуре 130-150°С в течение 2-3 часов. Массовое соотношение серы с битумом составляет 20-70:30-80. Предлагаемый способ является экологически более безопасным, позволяет удешевить целевой продукт за счет введения значительного количества серы, решить проблему утилизации серы, являющуюся побочным продуктом нефтедобычи и нефтепереработки. При последующем изготовлении сероасфальтобетона можно использовать любые минеральные наполнители, в том числе загрязненные, это не сказывается на свойствах целевого продукта. Полученный серобитум обладает повышенной прочностью, имеет лучшее сцепление с минеральными наполнителями, проявляет высокую морозостойкость. Сероасфальтобетон, изготовленный на его основе, также обладает улучшенными эксплуатационными характеристиками. 7 з.п. ф-лы, 3 табл., 21 пр.

Формула изобретения

1. Способ получения серобитума на основе расплавленных битума и серы, а также активирующей добавки, включающий перемешивание компонентов при нагревании, отличающийся тем, что в качестве активирующей добавки используют амины в количестве 0,3-3,0 мас.% по отношению к сере, реакцию ведут при температуре 130-150°С в течение 2-3 ч, а массовое соотношение серы с битумом составляет 20-70:30-80.

2. Способ по п.1, отличающийся тем, что в качестве аминов используют первичные амины.

3. Способ по п.1, отличающийся тем, что в качестве аминов используют вторичные амины.

4. Способ по п.1, отличающийся тем, что в качестве аминов используют третичные амины.

5. Способ по п.1, отличающийся тем, что амины добавляют в расплавленную серу до ее смешивания с расплавленным битумом.

6. Способ по п.1, отличающийся тем, что амины добавляют в расплавленный битум до его смешивания с расплавленной серой.

7. Способ по п.1, отличающийся тем, что амины добавляют непосредственно в реакционную смесь серы с битумом.

8. Способ по п.1, отличающийся тем, что используют дорожный битум любой марки.

Описание изобретения к патенту

Изобретение относится к строительству, а именно к способам получения дорожно-строительных материалов - серобитума для производства сероасфальтобетона.

Перспективность производства серобитумов и их применения в дорожном строительстве обусловлена следующими обстоятельствами. Во-первых, обширностью сырьевой базы в виде технической серы и серосодержащих отходов. В последнее десятилетие во всех промышленно развитых странах, в том числе и России, наблюдается рост производства технической серы, прежде всего как побочного продукта при переработке и очистке нефти природных и топочных газов. Серосодержащие отходы вывозят в отвал. По некоторым данным в России ежегодно производят 5 млн тонн серы, только в Республике Татарстан - более 300000 тонн. Введение серы позволяет существенно снизить расходы битума, цена на который в связи с энергетическим кризисом значительно увеличилась. Уменьшение содержания битума в серобитумах за счет добавок более дешевой и имеющейся в значительных количествах серы обеспечивает снижение затрат на устройство дорожных покрытий. Так, даже незначительное добавление серы (до 3 мас.% на битумную эмульсию) позволяет снизить себестоимость на 4-5%. Расширение областей применения серы и серосодержащих отходов является неотложной задачей как с экономической, так и с экологической точек зрения. Принимая во внимание, что строительство является одновременно одной из ведущих и материалоемких отраслей народного хозяйства, то использование серы и серосодержащих отходов в технологии стройиндустрии России - это перспективное и экономически привлекательное направление.

Во-вторых, применение серобитумов при строительстве и ремонте дорожного полотна позволяет широко использовать в дорожном строительстве не щебень, а дешевые инертные материалы (песчаные грунты, слабые каменные материалы, золы и шлаки), использование которых в сочетании с обычными битумами невозможно, что также обеспечивает существенный экономический эффект.

Главная же причина состоит в значительном улучшении свойств асфальтобетонных смесей на основе серобитумов: более высокая прочность при сжатии, что дает возможность уменьшить толщины соответствующих слоев дорожных покрытий; более высокая теплоустойчивость без значительного увеличения жесткости при низких температурах, что снижает опасность образования в слоях дорожных покрытий трещин в зимнее время и пластических деформаций в летний период; приготовление смесей на основе серобитумов при более низких температурах нагрева компонентов; более высокая устойчивость серобитумных материалов к динамическим нагрузкам; более высокая устойчивость к воздействию органических растворителей и агрессивных сред, что позволяет использовать их при устройстве покрытий на стоянках автомобилей, станциях технического обслуживания, гидротехнических сооружений.

Таким образом, проблема налаживания производства серобитума в России является очень актуальной. Однако эта задача до сих пор не решена, поскольку известные способы производства серобитума предлагают либо незначительное добавление серы (до 10% по отношению к битуму), либо не позволяют достигнуть высоких физико-механических показателей серобитумов, в частности адгезии, температуры размягчения, морозостойкости (температуры хрупкости) в соответствии с требованиями ГОСТ 22245-90. Как показано ранее, увеличение количества серы в битумном сырье до 10% приводит к снижению пластичности, полученный битум не соответствует требованиям стандарта [И.Р.Теляшев. Исследование закономерности процесса взаимодействия тяжелых нефтяных остатков с элементной серой. Автореф. дисс. на соискание ученой степени к.т.н., 2002, с.20].

Большинство способов получения серобитумов основаны на активации реакционной смеси с дальнейшим ее перемешиванием с битумом. Активирование реакционной смеси производят различными путями, например кавитационно-акустическим воздействием или воздействием электромагнитного поля.

Так, известен способ получения серобитума [RU 2223992 С2, опубл. 2003.10.10], включающий предварительное нагревание битума до 125-170°С, активирование его кавитационно-акустическим воздействием, модифицирование серы путем введения в нее 0,5-10,0 мас.% от веса серы активированного битума и осуществлением кавитационно-акустического воздействия в течение 5-15 мин при 125-170°С, перемешивание кавитационно-акустическим воздействием модифицированной серы и активированного битума в весовом соотношении (0,03-1):1 при кратности циркуляции 3-10. Данный метод позволяет ввести в битум не более 10% серы.

Описан способ получения серобитумного вяжущего путем смешивания жидкой серы и дорожного битума в соотношении 20:80 и 80:20 при температуре 130-140°С с последующим воздействием на перемешиваемые компоненты мощным электромагнитным полем [RU 2159218, 20.11.2000]. Недостатком способа, несмотря на получение серобитума с большим содержанием серы, является необходимость применения сложного оборудования в виде аппарата вихревого слоя, снабженного ферромагнитными элементами, вращающимися в мощном электромагнитном поле, и невозможность достижения высоких физико-механических показателей вяжущего и, в частности, адгезии, температуры размягчения, морозостойкости (температуры хрупкости) в соответствии с требованиями ГОСТ 22245-90.

Другой возможностью активирования реакционной смеси в процессе получения серобитума является химическое воздействие.

Так, известны серобитумные вяжущие для асфальтобетонов, включающие битум и серу, являющуюся модификатором свойств асфальтов и смол, а также наполнителем битуминозных масс [SU 1270140 А1, опубл. 15.11.1986, SU 1474133 А1, опубл. 23.04.1989]. Указанные вяжущие имеют низкую температуру размягчения и дуктильности, а асфальтобетоны, приготовленные на их основе, вследствие этого имеют недостаточно высокую прочность.

Описан способ получения серобитума, включающий модифицирование серы дициклопентадиеном и перемешивание серы с битумом [RU 2163610, опубл. 27.02.2001]. Недостатком этого способа являются высокие энергозатраты за счет длительности процесса смешения и использование дорогостоящего модификатора.

В способе получения серобитумного вяжущего [RU 2255066 С1, 27.06.2005] путем совмещения расплавов предварительно модифицированной серы и битума серу предварительно связывают со смесью ненасыщенных жирных кислот - флотогудроном в соотношениях сера:флотогудрон, мас.%: (30:70)-(60:40) с получением органических полисульфидов и совмещают указанные расплавы при следующем соотношении компонентов, мас.%: предварительно модифицированная сера - органические полисульфиды - 20-80, битум - 20-80. Недостатком указанного способа является многостадийность процесса и использование дорогого модификатора в значительных количествах.

В качестве прототипа заявитель рассматривает способ получения серобитумного вяжущего [RU 2284304 С2, 27.09.2006], включающий смешивание компонентов - расплавленного битума и серы при нагревании при температуре 140-180°С, причем в расплавленный битум предварительно добавляют 1-5 мас.% стирольно-дициклопентадиен-инденовой смолы или алкадиен-стирольно-дициклопентадиен-инденовой смолы и 1-5 мас.% высокомолекулярных углеводородов - альфа-олефинов фракционного состава С2026 с температурой плавления 38-40°С и/или индустриального масла - нефтяного масла с вязкостью 5-50 мм2/с при 50°С и перемешивают в течение 0,5 ч, затем порциями добавляют серу в массовом соотношении с битумом 10-50:90-50 соответственно и перемешивают еще 2 часа. К недостаткам этого способа можно отнести введение в битум серы не более 50 мас.%, а также дороговизну использованных активаторов и сложность исполнения многостадийного процесса. В примерах, иллюстрирующих данное изобретение, указано использование битумов дорогих марок - БНД 90/130 и БНН 80/120. Кроме того, следует отметить, что при верхних температурных пределах, указанных в описании к патенту, происходит сильное выделение сероводорода, что делает этот способ неприемлемым по экологическим соображениям.

Технической задачей изобретения является создание нового экономичного способа получения серобитума (серобитумного вяжущего), расширяющего арсенал известных способов получения серобитумов, со значительным содержанием серы (20-70 мас.%), с высокими физико-механическими показателями серобитума, соответствующими требованиям ГОСТ 22245-90, и позволяющего на его основе получать высококачественный сероасфальтобетон с улучшенными эксплуатационными характеристиками.

Техническим результатом заявленного изобретения является активирование серы в процессе получения серобитума катализатором, в качестве которого используют амины, в результате чего разрушается энергетически устойчивое и потому неактивное восьмичленное кольцо серы на S2 и S 4, что позволяет сере активно взаимодействовать с битумом.

Технический результат достигается заявляемым способом получения серобитума на основе расплавленных битума и серы, а также активирующей добавки, включающей перемешивание компонентов при нагревании, причем для активации в реакционную смесь добавляют катализатор, в качестве которого используют амины в количестве 0,3-3,0 мас.% по отношению к сере, реакцию ведут при температуре 130-150°С в течение 2-3 часов, а массовое соотношение серы с битумом составляет 20-70:30-80.

В качестве катализатора используют первичные, вторичные или третичные амины, в том числе циклические и ароматические амины, а также их смеси. Добавление катализатора из вышеуказанных в массовом отношении 0,3-3,0% по отношению к сере приводит к химической активации серы - разрушается энергетически устойчивое и поэтому неактивное восьмичленное кольцо серы на S2 и S4, что позволяет сере активно взаимодействовать с компонентами битума. Добавление катализатора менее 0,3 мас.% по отношению к сере не позволяет достичь заявленного технического результата, а более 3% - нецелесообразно.

Получение серобитума перемешиванием активированной реакционной смеси из серы и битума при температуре 130-150°С обеспечивает осуществление химического взаимодействия между серой и компонентами битума, образуя однородную гомогенную смесь, которая приобретает способность сохранять стабильное состояние в течение длительного времени. Данный способ позволяет вводить в серобитум от 20 до 70 мас.% серы, что сильно удешевляет целевой продукт.

Температурный режим выбран из расчета необходимой температуры плавления серы (нижний предел) и пороговой температуры выделения газообразных отходов серы и сероводорода (до 150°С).

Время перемешивания реакционной смеси определено в 2-3 часа - в течение меньшего времени реакция не проходит полностью (диагностируется выпадение кристаллической серы при охлаждении), а большее нецелесообразно экономически.

Активирование серы катализатором, в качестве которого используют амины в количестве 0,3-3,0 мас.% по отношению к сере можно проводить как введением катализатора в расплавленную серу (при температуре 130-150°С) и дальнейшим смешением с нагретым 130-150°С битумом, так и добавлением катализатора к битуму с последующим смешением с серой, а также введением катализатора непосредственно в реакционную смесь. Для осуществления способа можно использовать битумы любой дорожной марки. Реакционную смесь перемешивают в течение 2-3 часов при температуре 130-150°С и массовых соотношениях сера:битум = 20:70-30:80. Полученный серобитум представляет собой смесь химических соединений серы и битума, которая приобретает способность сохранять стабильное состояние в обычных условиях в течение длительного времени, а также обладает улучшенными физико-химическими характеристиками.

Изобретение иллюстрируется следующими примерами конкретного выполнения.

Пример 1

В качестве исходных компонентов используют серу (ГОСТ 127-93), битум марки БНД 60-90 ГОСТ 22245-90.

80 г битума нагревают до t 130°C в обогреваемой емкости, снабженной мешалкой пропеллерного типа, и добавляют нагретую до 130°С смесь 20 г серы и 0,06 г катализатора (0,3 мас.% по отношению к сере), в качестве которого используют гексиламин (ч). Перемешивают при температуре 140-150°С в течение 2 часов.

Пример 2

Пример 2 проводят в условиях примера 1, но используют 70 г битума и 30 г серы, в качестве катализатора используют октиламин (ч) в количестве 0,3 г (1 мас.% по отношению к сере), а перемешивание реакционной смеси проводят в течение 2,5 часов.

Пример 3

Пример 3 проводят в условиях примера 1, но используют 60 г битума и 40 г серы, а в качестве катализатора используют додециламин (ч) в количестве 0,6 г (1,5% по отношению к сере).

Пример 4

Пример 4 проводят в условиях примера 1, но используют 50 г битума и 50 г серы, в качестве катализатора используют анилин (ч) в количестве 1,0 г (2% по отношению к сере), а перемешивание реакционной смеси проводят в течение 2,5 часов.

Пример 5

Пример 5 проводят в условиях примера 1, но используют 40 г битума и 60 г серы, а в качестве катализатора используют 1-аминонафталин (ч) в количестве 1,5 г (2,5 мас.% по отношению к сере).

Пример 6

Пример 6 проводят в условиях примера 1, но используют 30 г битума и 70 г серы, в качестве катализатора используют 2-аминонафталин (ч) в количестве 2,1 г (3 мас.% по отношению к сере), а перемешивание реакционной смеси проводят в течение 3 часов.

Пример 7

Пример 7 проводят в условиях примера 1, но в качестве катализатора используют дигексиламин (ч) в количестве 0,6 г (3 мас.% по отношению к сере).

Пример 8

Пример 8 проводят в условиях примера 2, но катализатор добавляют в битум с последующим добавлением к ним расплавленной серы и в качестве катализатора используют диоктиламин (ч) в количестве 0,45 г (1,5 мас.% по отношению к сере).

Пример 9

Пример 9 проводят в условиях примера 3, но в качестве катализатора используют метилдодециламин (ч) в количестве 0,4 г (1 мас.% по отношению к сере).

Пример 10

Пример 10 проводят в условиях примера 4, но катализатор добавляют непосредственно в реакционную смесь битума и серы и в качестве катализатора используют метилаланин (ч) в количестве 0,25 г (0,5 мас.% по отношению к сере).

Пример 11

Пример 11 проводят в условиях примера 6, но в качестве катализатора используют метиламинонафталин (ч) в количестве 0,7 г (1 мас.% по отношению к сере).

Пример 12

Пример 12 проводят в условиях примера 1, но в качестве катализатора используют диметилдодециламин (ч) в количестве 0,2 г (1 мас.% по отношению к сере).

Пример 13

Пример 13 проводят в условиях примера 4, но в качестве катализатора используют цетилдиметиламин (ч) в количестве 0,5 г (1 мас.% по отношению к сере).

Пример 14

Пример 14 проводят в условиях примера 6, но в качестве катализатора используют алкилпиперазин (ч) в количестве 2,1 г (3 мас.% по отношению к сере.

Пример 15

Пример 15 проводят в условиях примера 1, но в качестве катализатора используют пиперазин (цикличесикий амин) в количестве 0,4 г (2 мас.% по отношению к сере).

Пример 16

Пример 16 проводят в условиях примера 3, но в качестве катализатора используют пиразин (ч) в количестве 0,2 г (0,5 мас.% по отношению к сере).

Пример 17

Пример 17 проводят в условиях примера 5, но в качестве катализатора используют алкилпиперазин (ч) в количестве 0,6 г (1 мас.% по отношению к сере).

Пример 18

Пример 18 проводят в условиях примера 6, но в качестве катализатора используют алкилпиридин (ч) в количестве 1,4 г (2 мас.% по отношению к сере).

Пример 19

Пример 19 проводят в условиях примера 2, но в качестве катализатора используют смесь аминов в количестве 0,09 г (0,3 мас.% по отношению к сере) - нафтиламин, диметилдодоцеиламин, диметиланилин, триметиленанилин в массовом соотношении 1:1:1:1.

Пример 20

Пример 20 проводят в условиях примера 6, но в качестве катализатора используют смесь аминов в количестве 2,1 г (3 мас.% по отношению к сере) - анилин, диметилдодоцеиламин, бутилпиридин в массовом соотношении 1:1:2.

Пример 21

Пример 21 проводят в условиях примера 4, но используют битум марки БНД 90/130, а в качестве катализатора используют смесь аминов в количестве 0,45 г (1,5 мас.% по отношению к сере) - анилин, диметилдодоцеиламин, бутилпиридин в массовом соотношении 1:1:2.

Исследование свойств полученного серобитума проводили в соответствии со следующими стандартами: глубина проникновения иглы ГОСТ 11501, температура размягчения по кольцу и шару ГОСТ 11506, температура хрупкости по Фраасу, °С (морозостойкость) ГОСТ 11507.

Морозостойкость определяли для серобитумов, полученных по примерам 20 и 21, она составила -30°С и -35°С соответственно, что является отличным показателем.

Другие физико-механические показатели серобитума, полученного заявляемым способом, представлены в таблице 1.

Как видно из результатов, представленных в таблице 1, полученные данные для глубины проникновения иглы при 25°С и температуры размягчения по кольцу и шару всегда соответствуют стандарту. Так, значения глубины проникновения иглы при 25°С 67-82 лежат в пределах, указанных в стандарте (60-90), и значения температуры размягчения по кольцу и шару (49-59) также отвечают требованиям ГОСТ (не менее 47).

Растяжимость образцов с высоким содержанием серы всегда ниже стандарта за счет образования коллоидной системы серобитумный полимер-битум, однако образование этих коллоидных частиц серобитума положительно влияет на прочность получаемого сероасфальтобетона за счет лучшего сцепления с минеральным наполнителем.

На основе полученного по заявляемому способу серобитума был изготовлен стандартным способом сероасфальтобетон следующего состава, мас.%:

ОПГС43,5
ПГС 33,5
Высевка доломитовая13,7
Серобитум, полученный по примеру 1313 9,3

Испытание свойств сероасфальтобетона проводили по ГОСТ 12801-98. Физико-механические свойства полученного сероасфальтобетона приведены в таблице 2.

Как показывают результаты испытаний, все показатели не уступают требованиям ГОСТ 9128, а по ряду показателей существенно превосходят их. Так, показатель водонасыщения, равный 1,5%, соответствует требованиям стандарта (1,5-4), показатель набухания по объему лучше указанного в стандарте (0,3% против 1%), предел прочности при сжатии превышает требования стандарта: 115 против 110 при 0°С и 12,5 против 12 при 50°С, коэффициент водостойкости лучше указанного в ГОСТ: 0,9 против 0,85. Сцепление битума с минеральной частью асфальтобетонной смеси соответствует № 1 (полное покрытие образца).

Кроме того, были проведены в соответствии с ГОСТ 12801-98 испытания образцов-вырубок, взятых с опытного участка из сероасфальтобетонного покрытия (толщина слоя 4,9 см, между укладкой сероасфальтобетона и вырубкой образца прошло 2 года). Результаты приведены в таблице 3.

Результаты, приведенные в таблице 3, свидетельствуют, что физико-механические показатели вырубки покрытия из сероасфальтобетона полностью соответствуют требованиям ГОСТ 9128-97: показатель водонасыщения 2,9 при норме 1-4, набухание по объему 0,18 при требованиях стандарта 1-0, предел прочности при сжатии 67,3 и 66,8 при норме >22 (при 20°С) и 25,1 при норме >12 (при 50°С), коэффициент водостойкости 0,99 при требованиях >0,85, коэффициент уплотнения 1,0 при норме >0,98. Коэффициент уплотнения сероасфальтобетона соответствует требованиям СНиП 3.06.03-85.

Таким образом, предложен новый экономичный и более экологичный способ получения серобитума, позволяющий получать серобитум, соответствующий требованиям стандарта и изготавливать на его основе сероасфальтобетон с улучшенными физико-механическими показателями.

Заявленный способ получения серобитума обладает следующими преимуществами:

1) удешевление целевого продукта в 1,5 раза за счет добавления значительного количества серы,

2) способ решает проблему утилизации серы, являющуюся побочным продуктом нефтедобычи и нефтепереработки;

3) для получения серобитума заявляемым способом можно использовать дорожный битум любой марки;

4) заявляемый способ является экологически более безопасным по сравнению с известными способами получения серобитума, поскольку при соблюдении температурного режима не наблюдается образование сероводорода;

5) способ позволяет при последующем изготовлении сероасфальтобетона использовать любые минеральные наполнители, такие как ПГС, щебень, как соответствующие ГОСТ, так и загрязненные, это не сказывается на свойствах целевого продукта.

Продукт, получаемый заявляемым способом, также обладает значительными преимуществами: повышенной прочностью по сравнению с обычным битумом, имеет лучшее сцепление битума с минеральными наполнителями, проявляет высокую морозостойкость.

Сероасфальтобетон из серобитума, полученный заявляемым способом, обладает улучшенными эксплуатационными характеристиками.

Таблица 1
Физико-механические показатели серобитума, полученного заявляемым способом
№ примераСоотношение битум*:сераКатализатор Количество катализатора, % по отношению к сере Глубина проникновения иглы, мм 0,1 при 25°С Температура размягчения по кольцу и шару, °С не ниже Растяжимость, см, не менее при 25°С
180:20 гексиламин0,3 70 5052
2 70:30октиламин 1,0 7249 43
3 60:40 додециламин1,5 77 5638
4 50:50анилин 2,0 7957 38
5 40:60 1-аминонафталин 2,579 5431
6 30:702-аминонафталин 3,0 7858 36
7 80:20 дигексиламин3,0 81 5455
8 70:30диоктиламин 1,5 6751 46
9 60:40 метилдодециламин 1,077 5634
10 50:50метилаланин 0,5 8052 39
11 30:70 метиламинонафталин 1,082 5138
12 80:20диметилдодециламин 1,0 8154 55
13 50:50 цетилдиметидамин 1,079 5445
14 30:70алкилпиперазин 3,0 7858 36
15 80:20 пиперазин2,0 76 5255
16 60:40пиразин 0,5 7754 35
17 40:60 алкилпиперазин1,0 80 4842
18 30:70алкилпиридин 2,0 7949 34
19 70:30 нафтиламин, диметилдодоцеиламин, диметиланилин, триметиленанилин в массовом соотношении 1:1:1:1 0,367 4956
20 30:70анилин, диметилдодоцеиламин, бутилпиридин в массовом соотношении 1:1:2 3,095 5934
Норма по ГОСТу для БНД 60/90 60-90Не менее 47 Не менее 55
21 50:50 (БНД 90/130) анилин, диметилдодоцеиламин, бутилпиридин в массовом соотношении 1:1:21,5 12940 41
Норма по ГОСТу для БНД 90/130 91-130Не более 43Не менее 65
По прототипу с БНД 90/130 90-12043-48 -
* Во всех примерах, кроме примера 21, использован битум марки БНД 60/90

Таблица 2
Физико-механические показатели сероасфальтобетона из серобитума, полученного заявляемым способом
Наименование показателей Требования ГОСТ 9128 Фактические показатели
Плотность, г/см3 -2,32
Водонасыщение, % 1,5-4 1,5
Набухание по объему, %1,0 0,3
Предел прочности при сжатии, способ получения серобитума, патент № 2452748 способ получения серобитума, патент № 2452748
КГС/см3 способ получения серобитума, патент № 2452748 способ получения серобитума, патент № 2452748
0°С110 115
50°С12 12,5
Коэффициент водостойкости 0,850,9
Сцепление битума с минеральной частью асфальтобетонной смеси способ получения серобитума, патент № 2452748 № 1

Таблица 3
Физико-механические показатели сероасфальтобетона (образцов-вырубок) из серобитума, полученного заявляемым способом
Показатели Водонасыщение, % Набухание по объему, % Предел прочности при сжатии, КГС/см3 Коэффициент
Rcyx, 20°C Rвод, 20°C R50°С Кводост. Куплотн.
Переформованных образцов 2,90,18 67,366,8 25,10,99 1,0
Требования по стандарту1-4 0-1 >22способ получения серобитума, патент № 2452748 >12 >0,85 >0,98

Класс C08L95/00 Композиции битуминозных материалов, например асфальта, гудрона или вара

способ получения битумно-каучукового вяжущего -  патент 2529552 (27.09.2014)
битумно-уретановое вяжущее и способ его получения -  патент 2527470 (27.08.2014)
квантово-активированная битумная эмульсия -  патент 2525547 (20.08.2014)
способ и устройство для приготовления модифицированных резинобитумных мастик -  патент 2525487 (20.08.2014)
высоконаполненный композиционный материал -  патент 2525074 (10.08.2014)
ресурсосберегающая щебеночно-мастичная смесь для строительства и ремонта дорожных покрытий -  патент 2524081 (27.07.2014)
гидроизоляционный материал -  патент 2522631 (20.07.2014)
способ получения полимерно-битумных композиций -  патент 2522618 (20.07.2014)
асфальтобетонная смесь -  патент 2522497 (20.07.2014)
асфальтобетонная смесь на наномодифицированном вяжущем -  патент 2521988 (10.07.2014)

Класс C08K3/06 сера

Наверх