Поиск патентов
ПАТЕНТНЫЙ ПОИСК В РФ

цеолитсодержащий катализатор, способ его получения и способ конверсии прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола

Классы МПК:B01J29/40 типа пентасила, например ZSM-5, ZSM-8 или ZSM-11, приведенные в патентных документах USA 3702886; GBA 1334243 и USA 3709979 соответственно
B01J23/885 и медью
B01J23/888 вольфрам
B01J37/04 смешивание
C10G35/095 содержащими кристаллические алюмосиликаты, например молекулярные сита
B82B3/00 Изготовление или обработка наноструктур
Автор(ы):,
Патентообладатель(и):Российская Федерация, от имени которой выступает Министерство образования и науки Российской Федерации (RU),
Государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" (RU)
Приоритеты:
подача заявки:
2010-10-21
публикация патента:

Изобретение относится к цеолитсодержащим катализаторам. Описан цеолитсодержащий катализатор для конверсии прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола, содержащий высококремнеземный цеолит типа H-ZSM-5 с силикатным модулем SiO2/Al2O 3=30÷50, в количестве 97,0÷99,0 мас.% и модифицирующий компонент - металл, по крайней мере, один из группы: медь, вольфрам, молибден, введенный в высококремнеземный цеолит в виде наноразмерных порошков указанных металлов, в количестве 1,0÷3,0 мас.%; катализатор сформирован в процессе термообработки. Описан способ получения указанного выше катализатора, отличающийся тем, что высококремнеземный цеолит типа H-ZSM-5 с силикатным модулем SiO 2/Al2O3=30÷50 получают гидротермальной кристаллизацией реакционной смеси при 120÷180°С в течение 1÷6 сут, содержащей источники окиси кремния, окиси алюминия, окиси щелочного металла, гексаметилендиамин и воду, с дальнейшим смешением высококремнеземного цеолита с наноразмерными порошками металлов, полученных методом электрического взрыва проволоки металла в среде инертного газа аргона, с последующей механохимической обработкой, формовкой катализаторной массы, сушкой и прокалкой. Описан способ конверсии прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола в присутствии описанного выше катализатора, причем процесс конверсии проводят при 350÷425°С, объемной скорости 1,0-2,0 ч-1 и давлении 0,1÷1,0 МПа. Технический результат-увеличение активности и селективности катализатора. 3 н. и 1 з.п. ф-лы, 1 табл., 6 пр.

Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, в частности к способам получения катализаторов для конверсии алифатических углеводородов С2÷С 12 в высокооктановый компонент бензина с низким содержанием бензола.

Основным промышленным процессом получения высокооктановых бензинов и ароматических углеводородов является каталитический риформинг прямогонных бензиновых фракций, который проводится при высоких температурах 450÷550°С, высоком давлении 0,1÷3,5 МПа и в среде водородсодержащего газа. Недостатками процесса каталитического риформинга прямогонных бензинов являются использование дорогостоящего Pt -содержащего катализатора, водородсодержащего газа и высокое содержание бензола и ароматических углеводородов в продуктах реакции.

Известен способ приготовления катализатора для олигомеризации и ароматизации низкомолекулярных углеводородов C2÷C 12, содержащий цеолит семейства пентасил с силикатным модулем SiO2/Al2O3=20÷80, модифицированный оксидом цинка, платиной и оксидом бора, связующее вещество - оксид алюминия (пат. RU № 2144845, B01J 29/44, C10G 35/095, 1998).

Недостатками данного катализатора являются использование дорогостоящего Pt-модификатора и невысокий выход 34,7 мас.% жидких продуктов реакции превращения ШФЛУ при 600°С.

Известен способ получения катализатора для превращения низкомолекулярных углеводородов в высокооктановый бензин или ароматические углеводороды, содержащий цеолит семейства пентасил с силикатным модулем SiO 2/Al2O3=20÷80, модифицированный оксидом цинка, платиной и оксидом фосфора, связующее вещество - оксид алюминия (пат. RU № 2144846, B01J 29/44, C10G 35/095, 1998).

Недостатками данного катализатора являются использование дорогостоящего Pt-модификатора и невысокий выход 54,2 мас.% жидких продуктов реакции превращения ШФЛУ при 600°С.

Известен способ получения высокооктанового бензина с низким содержанием бензола из сырья, включающий каталитический риформинг бензинового сырья с получением катализата, выделение из катализата водородсодержащего газа и выделение из полученного нестабильного продукта риформинга высокооктанового бензина и газов стабилизации (пат. RU № 2213124, C10G 35/095, 59/02, 2002).

Затем из высокооктанового катализата выделяют бензиновую фракцию, содержащую более 5,0 мас.% бензола и алифатические углеводороды, и осуществляют ее контакт с катализатором, включающим цеолит группы пентасилов, в условиях образования ароматических углеводородов из алифатических компонентов фракции и превращения хотя бы части бензола, и полученный продукт смешивают с нестабильным продуктом риформинга.

Недостатками данного способа являются многостадийность и сложность проведения процесса получения высокооктановых бензинов.

Известен цеолитный катализатор и способ превращения прямогонной бензиновой фракции нефти в высокооктановый компонент бензина (пат. RU № 2323778, B01J 29/42, 2006). Катализатор содержит высококремнеземный цеолит с мольным отношением SiO2/Al2O 3=60 с остаточным содержанием Na2O не более 0,02 мас.%, модифицированный металлами Pt, Ni, Zn или Fe, которые входят в состав катализатора в виде наноразмерных порошков и их содержание составляет не более 1,5 мас.%.

Способ превращения бензиновой фракции нефти в высокооктановый компонент бензина осуществляется путем контакта их с катализатором при 300÷400°С, атмосферном давлении и нагрузке катализатора по сырью 2,0 ч-1.

Недостатком данного способа является достаточно высокое содержание ароматических углеводородов в катализате.

Наиболее близким по сущности техническим решением является катализатор для превращения алифатических углеводородов C2÷C12 , способ его получения и способ превращения алифатических углеводородов С2÷С12 в высокооктановый бензин и/или ароматические углеводороды, принятый за прототип (пат. RU № 2235590, 7 B01J 29/46, 2003). Катализатор содержит железоалюмосиликат со структурой цеолита типа ZSM-5 с силикатным модулем SiO 2/Al2O3=20÷160, SiO2 /Fe2O3=30÷5000, который получают гидротермальной кристаллизацией реакционной смеси при 120-180°С в течение 1-6 сут, содержащей источники окиси кремния, окиси алюминия, окиси щелочного металла, гексаметилендиамин и воду, с дальнейшим смешением железоалюмосиликата с соединениями модифицирующих металлов, упрочняющих добавок и связующим, с последующей механохимической обработкой, формовкой катализаторной массы, сушкой и прокалкой. В качестве модифицирующего компонента содержит по крайней мере один оксид элемента, выбранный из группы медь, цинк, галлий, лантан, молибден, рений в количестве 0,1÷10,0 мас.%.

Способ превращения алифатических углеводородов С 2÷С12 в высокооктановый бензин и/или ароматические углеводороды в присутствии катализатора проводят при 300÷550°С, объемной скорости 0,5÷5,0 ч-1 и давлении 0,1÷1,5 МПа.

Недостатком способа, принятого за прототип, является высокое содержание бензола и ароматических углеводородов в катализате.

Задача изобретения - получение активного и селективного катализатора для процесса конверсии прямогонных бензиновых фракций в высокооктановый компонент бензина с низким содержанием бензола.

Технический результат достигается тем, что предлагаемый цеолитсодержащий катализатор для конверсии прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола получают сухим смешением Н-формы высококремнеземного цеолита типа H-ZSM-5 с силикатным модулем SiO2/Al2O3=30÷50 с наноразмерными порошками металлов, в качестве модифицирующего металла, по крайней мере, с одним из группы: медь, вольфрам, молибден, в количестве 1,0÷3,0 мас.%, полученных методом электрического взрыва проволоки металла в среде инертного газа аргона, с последующей механохимической обработкой в вибромельнице в течение 0,1÷24 ч, формовкой катализаторной массы в гранулы, сушкой при 100÷110°С в течение 2÷4 ч и катализатор сформирован в процессе термообработки при 550÷600°С в течение 0,1÷12 ч.

Высококремнеземный цеолит типа H-ZSM-5 с силикатным модулем SiO 2/Al2O3=30÷50 получают гидротермальной кристаллизацией реакционной смеси при 120÷180°С в течение 1÷6 сут, содержащей источники окиси кремния, окиси алюминия, окиси щелочного металла, гексаметилендиамин и воду.

Под действием механохимической и высокотемпературной обработок смеси цеолита с наноразмерными порошками металлов происходит модифицирование высококремнеземного цеолита H-ZSM-5 активными компонентами, формирование и образование активного и селективного катализатора.

Предлагаемое изобретение иллюстрируется следующими примерами.

Пример 1 (по прототипу). К 200 г жидкого стекла (29% SiO2, 9% Na2 O, 62% Н2О) при перемешивании добавляют 11,8 г гексаметилендиамина (R) в 100 мл Н2О, 24,15 г Al(NO3)3 ·9Н2О в 160 мл Н2О, 1 г "затравки" высококремнеземного цеолита и приливают 0,1 н. раствор NHO 3. Полученную смесь загружают в автоклавы из нержавеющей стали, нагревают до 175÷180°С и выдерживают при перемешивании 2÷6 сут, а затем охлаждают. Синтезированный продукт промывают водой, сушат и прокаливают при 550-600°С 12 ч. Для перевода в Н-форму цеолиты декатионируют обработкой 25% раствором NH 4Cl (10 мл раствора на 1 г цеолита) при 90°С 2 ч, затем промывают водой, сушат при 110°С и прокаливают при 540°С 6 ч. Получают H-ZSM-5 с силикатным модулем SiO 2/Al2O3=30, степень кристалличности продукта 96%.

Затем 10 г H-ZSM-5 с силикатным модулем SiO2/Al2O3=30 подвергают механохимической обработке в вибромельнице в течение 8 ч, после этого катализаторную массу формуют в гранулы, сушат 2 ч при 20-30°С, затем при 110°С в течение 3-4 ч и прокаливают 8 ч при 550-600°С.

Пример 2. H-ZSM-5 с силикатным модулем SiO2 /Al2O3=50 получают так же, как в примере 1, но вместо 24,15 г Al(NO3)3·9Н 2О берут 14,475 г Al(NO3)3·9H 2O.

Затем 9,9 г H-ZSM-5 с силикатным модулем SiO2/Al2O3=50 смешивают с 0,1 г наноразмерным порошком (НРП) Mo и подвергают механохимической обработке в вибромельнице в течение 4 ч. Полученную катализаторную массу формуют в гранулы, сушат 2 ч при 110°С и прокаливают 8 ч при 550÷600°С.

Полученный цеолитсодержащий катализатор имеет состав, мас.%:

H-ZSM-5 (SiO2/Al2O3=50) 99,0
Mo1,0

Пример 3. Так же, как в примере 2, берут 9,7 г H-ZSM-5 с силикатным модулем SiO2/Al 2O3=50 и смешивают с 0,3 г НРП Мо, затем подвергают механохимической обработке в вибромельнице в течение 4 ч. Полученную катализаторную массу формуют в гранулы, сушат 2 ч при 110°С и прокаливают 8 ч при 550÷600°С.

Полученный цеолитсодержащий катализатор имеет состав, мас.%:

H-ZSM-5 (SiO2/Al2O3=50) 97,0
Мо3,0

Пример 4. Так же, как в примере 2, 9,9 г H-ZSM-5 с силикатным модулем SiO2/Al2O 3=50 смешивают с 0,1 г НРП W и подвергают механохимической обработке в вибромельнице в течение 4 ч. Полученную катализаторную массу формуют в гранулы, сушат 2 ч при 110°С и прокаливают 8 ч при 550-600°С.

Полученный цеолитсодержащий катализатор имеет состав, мас.%:

H-ZSM-5 (SiO2/Al2O3=50) 99,0
W1,0

Пример 5. Так же, как в примере 2, берут 9,7 г H-ZSM-5 с силикатным модулем SiO2/Al 2O3=50 и смешивают с 0,3 г НРП W, затем подвергают механохимической обработке в вибромельнице в течение 4 ч. Полученную катализаторную массу формуют в гранулы, сушат 2 ч при 110°С и прокаливают 8 ч при 550÷600°С.

Полученный цеолитсодержащий катализатор имеет состав, мас.%:

H-ZSM-5 (SiO2/Al2O3=50) 97,0
W3,0

Пример 6. Так же, как в примере 2, 9,9 г H-ZSM-5 с силикатным модулем SiO2/Al 2O3=50 смешивают с 0,1 г НРП Cu и подвергают механохимической обработке в вибромельнице в течение 4 ч. Полученную катализаторную массу формуют в гранулы, сушат 2 ч при 110°С и прокаливают 8 ч при 550÷600°С.

Полученный цеолитсодержащий катализатор имеет состав, мас.%:

H-ZSM-5 (SiO2/Al2O3=50) 99,0
Cu1,0

Полученные катализаторы испытывают в процессе конверсии алифатических углеводородов (прямогонной бензиновой фракции 40÷185°С) в высокооктановый компонент бензина и ароматические углеводороды на автоматизированной установке проточного типа со стационарным слоем катализатора при температурах 350÷425°С, объемной скорости подачи сырья 1,0-2,0 ч -1 и давлении 0,1÷1,0 МПа.

В процессе конверсии смеси алифатических углеводородов (прямогонной бензиновой фракции 40÷185°С) с повышением температуры реакции от 350 до 425°С на высококремнеземном цеолите типа H-ZSM-5 протекают реакции крекинга, дегидрирования, изомеризации, дегидроциклизации и ароматизации парафиновых углеводородов с образованием преимущественно на первых стадиях процесса олефиновых углеводородов, которые в дальнейшем превращаются в изопарафиновые и алкилароматические углеводороды. Введение в высококремнеземный цеолит типа H-ZSM-5 модифицирующих добавок в виде наноразмерных порошков металлов из группы: медь, молибден, вольфрам в количестве 1,0÷3,0 мас.% позволяет значительно повысить выход высокооктанового компонента бензина, селективность образования алкилароматических углеводородов и понизить выход бензола до 1,0÷2,0 мас.% из прямогонных бензиновых фракций, по сравнению с не модифицированным цеолитом.

Приведенные в таблице примеры уточняют изобретение, не ограничивая его.

Как видно из примеров катализаторов 1÷6 таблицы, катализаторы 2÷6 имеют более высокий выход (59÷78%) жидких продуктов реакции - высокооктанового бензина из прямогонных бензиновых фракций, чем катализатор по прототипу (пример 1).

Таким образом, предлагаемые катализаторы для конверсии алифатических углеводородов прямогонной бензиновой фракции в высокооктановый компонент бензина бензин и ароматические углеводороды на основе высококремнеземного цеолита типа H-ZSM-5 с силикатным модулем SiO2/Al2O3 =30-50 и модифицированные наноразмерными порошками металлов, по крайней мере, одним металлом из группы: медь, молибден, вольфрам в количестве 1,0÷3,0 мас.% позволяют увеличить выход высокооктанового бензина до 60÷78% и селективность образования алкилароматических углеводородов из алифатических углеводородов прямогонной бензиновой фракции 40÷185°С и понизить содержание бензола в катализате до 1,0÷2,0 мас.%.

Предварительная механохимическая активация смеси исходных компонентов позволяет значительно снизить температуру формирования активных компонентов и получить высокодисперсный, активный и селективный катализатор. Введение в цеолит модификаторов в виде наноразмерных порошков металлов в количестве 1,0÷3,0 мас.%, полученных способом электрического взрыва проволоки металла, позволяет увеличить выход высокооктанового бензина до 60÷78% и селективность образования алкилароматических углеводородов из алифатических углеводородов прямогонной бензиновой фракции.

Способ получения высокооктанового компонента бензина с низким содержанием бензола из прямогонной бензиновой фракции в присутствии катализаторов на основе высококремнеземного цеолита типа H-ZSM-5 с силикатным модулем SiO2/Al2 O3=30÷50 и модифицированный, по крайней мере, одним наноразмерным порошком металла из группы: медь, молибден вольфрам в количестве 1,0÷3,0 мас.% позволяют увеличить выход высокооктанового бензина и селективность образования алкилароматических углеводородов из алифатических углеводородов прямогонной бензиновой фракции 40÷185°С, чем в присутствии катализатора по прототипу (пример 1).

Превращение прямогонной бензиновой фракции 40÷185°С на цеолитных катализаторах
Пример катализатора, № Тр, °С V, ч-1 Выход продуктов, мас.% Расчетное октановое число, ИМ
газовая фазажидкая фазабензол арены
1 (по прототипу пат. RU № 2235590)350 2,0 34,965,1 1,221,8 92,3
375 2,0 36,863,2 1,523,4 94,7
400 2,0 42,957,1 2,826,7 95,5
425 2,0 45,154,9 3,631,5 96,5
2350 2,022,2 77,80,8 17,691,9
375 2,030,4 69,61,4 23,194,4
400 2,037,3 62,71,8 27,795,2
425 2,041,8 58,22,0 32,796,8
3 350 2,020,4 79,60,8 16,091,0
350 1,035,1 64,91,3 22,792,9
375 2,026,4 73,61,1 21,692,2
400 2,030,9 69,11,5 22,792,7
425 2,033,9 66,11,9 23,594,6
4 350 2,032,5 67,51,3 21,692,1
375 2,041,2 58,81,8 27,694,3
400 2,046,6 53,42,0 31,996,0
425 2,049,5 50,52,0 33,896,6
5 350 2,035,0 65,01,3 22,592,5
375 2,040,3 59,71,9 26,593,6
400 2,041,1 58,92,0 32,696,7
425 2,049,9 50,12,0 34,497,1
6 350 2,09,2 90,80,4 9,685,7
375 2,013,5 86,50,4 12,587,3
400 2,020,0 80,00,7 15,489,3
425 2,024,8 75,21,0 16,990,1
425 1,034,6 65,41,6 26,693,7

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Цеолитсодержащий катализатор для конверсии прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола, отличающийся тем, что он содержит высококремнеземный цеолит типа H-ZSM-5 с силикатным модулем SiO2/Al 2O3=30÷50, в качестве модифицирующего компонента содержит металл, по крайней мере, один из группы: медь, вольфрам, молибден, введенный в высококремнеземный цеолит в виде наноразмерных порошков металлов, в количестве 1,0÷3,0 мас.%; катализатор сформирован в процессе термообработки и имеет следующий состав, мас.%:

Высококремнеземный цеолит типа H-ZSM-5 цеолитсодержащий катализатор, способ его получения и способ конверсии   прямогонной бензиновой фракции в высокооктановый компонент бензина   с низким содержанием бензола, патент № 2446882
с силикатным модулем цеолитсодержащий катализатор, способ его получения и способ конверсии   прямогонной бензиновой фракции в высокооктановый компонент бензина   с низким содержанием бензола, патент № 2446882
SiO 2/Al2O3=30÷50 97,0÷99,0
Наноразмерные порошки металлов из группы: цеолитсодержащий катализатор, способ его получения и способ конверсии   прямогонной бензиновой фракции в высокооктановый компонент бензина   с низким содержанием бензола, патент № 2446882
медь, молибден, вольфрам 0,1÷3,0

2. Способ получения цеолитсодержащего катализатора по п.1, отличающийся тем, что высококремнеземный цеолит типа H-ZSM-5 с силикатным модулем SiO2/Al2O3=30÷50 получают гидротермальной кристаллизацией реакционной смеси при 120÷180°С в течение 1÷6 сут, содержащей источники окиси кремния, окиси алюминия, окиси щелочного металла, гексаметилендиамин и воду, с дальнейшим смешением высококремнеземного цеолита с наноразмерными порошками металлов, полученных методом электрического взрыва проволоки металла в среде инертного газа аргона, с последующей механохимической обработкой, формовкой катализаторной массы, сушкой и прокалкой.

3. Способ получения цеолитсодержащего катализатора по п.2, отличающийся тем, что катализатор получают сухим смешением высококремнеземного цеолита типа H-ZSM-5, модифицирующих наноразмерных порошков металлов с последующей механохимической обработкой в вибромельнице в течение 0,1-12 ч, формовкой катализаторной массы, сушкой при 100÷110°С в течение 2-4 ч и прокалкой при 550÷600°С 8-12 ч.

4. Способ конверсии прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола в присутствии катализатора, отличающийся тем, что используют катализатор по п.1 и процесс конверсии прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола проводят при 350÷425°С, объемной скорости 1,0-2,0 ч-1 и давлении 0,1÷1,0 МПа.


Скачать патент РФ Официальная публикация
патента РФ № 2446882

patent-2446882.pdf
Патентный поиск по классам МПК-8:

Класс B01J29/40 типа пентасила, например ZSM-5, ZSM-8 или ZSM-11, приведенные в патентных документах USA 3702886; GBA 1334243 и USA 3709979 соответственно

Патенты РФ в классе B01J29/40:
катализатор и способ синтеза олефинов из диметилового эфира в его присутствии -  патент 2518091 (10.06.2014)
каталитическая добавка для повышения октанового числа бензина каталитического крекинга и способ ее приготовления -  патент 2516847 (20.05.2014)
получение ароматических соединений из метана -  патент 2514915 (10.05.2014)
способ одновременного получения ароматических углеводородов и дивинила в присутствии инициатора пероксида водорода -  патент 2509759 (20.03.2014)
цеолитсодержащий катализатор, способ его получения и способ переработки прямогонного бензина в высокооктановый компонент бензина с пониженным содержанием бензола -  патент 2498853 (20.11.2013)
способ одновременного получения ароматических углеводородов и дивинила -  патент 2495017 (10.10.2013)
цеолитсодержащий катализатор, способ его получения и способ превращения прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола -  патент 2493910 (27.09.2013)
гетерогенные катализаторы для получения ароматических углеводородов ряда бензола из метанола и способ переработки метанола -  патент 2477656 (20.03.2013)
способ получения синтетических авиационных топлив из углеводородов, полученных по методу фишера-тропша, и катализатор для его осуществления -  патент 2473664 (27.01.2013)
микросферический бицеолитный катализатор для повышения октанового числа бензина крекинга вакуумного газойля и способ его приготовления -  патент 2473384 (27.01.2013)

Класс B01J23/885 и медью

Патенты РФ в классе B01J23/885:
способ получения катализатора дожига дизельной сажи -  патент 2455069 (10.07.2012)
способ получения этилацетата -  патент 2451007 (20.05.2012)
катализатор для получения сложных эфиров карбоновых кислот, способ его получения и способ получения сложных эфиров карбоновых кислот -  патент 2428251 (10.09.2011)
высокотемпературные катализаторы конверсии на основе шпинели -  патент 2305006 (27.08.2007)
катализатор и способ получения диметилового эфира и метанола из синтез-газа -  патент 2218988 (20.12.2003)
способ получения катализатора на основе никель-медного хромита -  патент 2207905 (10.07.2003)
катализатор гидроочистки нефтяных фракций и способ его получения -  патент 2197323 (27.01.2003)
катализатор низкотемпературной конверсии оксида углерода и способ его получения -  патент 2175265 (27.10.2001)
способ получения катализатора для низкотемпературного синтеза метанола -  патент 2161536 (10.01.2001)
способ приготовления катализатора для среднетемпературной конверсии оксида углерода с водяным паром -  патент 2157731 (20.10.2000)

Класс B01J23/888 вольфрам

Патенты РФ в классе B01J23/888:
каталитическая система и способ гидропереработки тяжелых масел -  патент 2525470 (20.08.2014)
лакунарный гетерополианион структуры кеггина на основе вольфрама для гидрокрекинга -  патент 2509729 (20.03.2014)
смешанные оксидные катализаторы в виде полых тел -  патент 2491122 (27.08.2013)
способ регенерации катализатора, используемого при дегидратации глицерина -  патент 2484895 (20.06.2013)
способ получения акролеина гетерогенно катализированным окислением в газовой фазе пропена -  патент 2373993 (27.11.2009)
промотированный алюмосиликатный катализатор и улучшенный способ обработки углеводородного сырья -  патент 2372984 (20.11.2009)
носитель катализатора и каталитическая композиция, способы их получения и применения -  патент 2366505 (10.09.2009)
мезопористые материалы с активными металлами -  патент 2334554 (27.09.2008)
способ получения каталитической композиции соосаждением, каталитическая композиция и способ гидрообработки углеводородного сырья -  патент 2242283 (20.12.2004)
каталитическая композиция на основе смеси металлов, ее получение и применение -  патент 2229931 (10.06.2004)

Класс B01J37/04 смешивание

Патенты РФ в классе B01J37/04:
способ получения сольвата хлорида неодима с изопропиловым спиртом для неодимового катализатора полимеризации изопрена -  патент 2526981 (27.08.2014)
способ карбонилирования с использованием связанных содержащих серебро и/или медь морденитных катализаторов -  патент 2525916 (20.08.2014)
микросферический катализатор крекинга "октифайн" и способ его приготовления -  патент 2522438 (10.07.2014)
способ получения наноструктурного фталоцианинового катализатора демеркаптанизации нефти и газоконденсата -  патент 2517188 (27.05.2014)
катализатор на основе меди, нанесенный на мезопористый уголь, способ его получения и применения -  патент 2517108 (27.05.2014)
каталитическая добавка для повышения октанового числа бензина каталитического крекинга и способ ее приготовления -  патент 2516847 (20.05.2014)
способ приготовления катализатора для получения ароматических углеводородов, катализатор, приготовленный по этому способу, и способ получения ароматических углеводородов с использованием полученного катализатора -  патент 2515511 (10.05.2014)
способ приготовления катализатора для окислительной конденсации метана, катализатор, приготовленный по этому способу, и способ окислительной конденсации метана с использованием полученного катализатора -  патент 2515497 (10.05.2014)
способ переработки биомассы в целлюлозу и раствор низкомолекулярных продуктов окисления (варианты) -  патент 2515319 (10.05.2014)
каталитическая добавка для окисления оксида углерода в процессе регенерации катализаторов крекинга и способ ее приготовления -  патент 2513106 (20.04.2014)

Класс C10G35/095 содержащими кристаллические алюмосиликаты, например молекулярные сита

Патенты РФ в классе C10G35/095:
катализатор циклизации нормальных углеводородов и способ его получения (варианты) -  патент 2529680 (27.09.2014)
способ получения высокооктанового базового бензина -  патент 2518481 (10.06.2014)
цеолитсодержащий катализатор, способ его получения и способ переработки прямогонного бензина в высокооктановый компонент бензина с пониженным содержанием бензола -  патент 2498853 (20.11.2013)
цеолитсодержащий катализатор, способ его получения и способ превращения прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола -  патент 2493910 (27.09.2013)
цеолитсодержащий катализатор, способ его получения и способ превращения низкооктановых бензиновых фракций в высокооктановый бензин без и в присутствии водорода -  патент 2480282 (27.04.2013)
цеолитсодержащий катализатор, способ его получения и способ превращения алифатических углеводородов c2-c12 и метанола в высокооктановый бензин и ароматические углеводороды -  патент 2478007 (27.03.2013)
гетерогенные катализаторы для получения ароматических углеводородов ряда бензола из метанола и способ переработки метанола -  патент 2477656 (20.03.2013)
способ улучшения катализатора ароматизации -  патент 2476412 (27.02.2013)
способ каталитического риформинга бензиновых фракций -  патент 2471855 (10.01.2013)
катализатор для риформинга бензиновых фракций и способ его приготовления -  патент 2471854 (10.01.2013)

Класс B82B3/00 Изготовление или обработка наноструктур

Патенты РФ в классе B82B3/00:
способ комбинированной интенсивной пластической деформации заготовок -  патент 2529604 (27.09.2014)
многослойный композиционный материал для защиты от электромагнитного излучения -  патент 2529494 (27.09.2014)
способ функционализации углеродных наноматериалов -  патент 2529217 (27.09.2014)
нанокомпонентная энергетическая добавка и жидкое углеводородное топливо -  патент 2529035 (27.09.2014)
способ получения насыщенных карбоновых кислот -  патент 2529026 (27.09.2014)
способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
способ модифицирования углеродных нанотрубок -  патент 2528985 (20.09.2014)
полимерный медьсодержащий композит и способ его получения -  патент 2528981 (20.09.2014)
композиции матриксных носителей, способы и применения -  патент 2528895 (20.09.2014)
полимерное электрохромное устройство -  патент 2528841 (20.09.2014)

Наверх