Поиск патентов
ПАТЕНТНЫЙ ПОИСК В РФ

катализатор, способ его приготовления и процесс неокислительной конверсии метана

Классы МПК:B01J29/48 содержащие мышьяк, сурьму, висмут, ванадий, ниобий, тантал, полоний, хром, молибден, вольфрам, марганец, технеций или рений
B01J23/75 кобальт
B01J23/882 и кобальтом
B01J21/16 глины или прочие минеральные силикаты
B01J29/46 металлы группы железа или медь
B01J37/02 пропитывание, покрытие или осаждение
C07C15/04 бензол 
C07C2/76 конденсацией углеводородов с частичным отщеплением водорода
Автор(ы):, , , ,
Патентообладатель(и):Учреждение Российской академии наук Институт катализа им. Г.К. Борескова Сибирского отделения РАН (RU)
Приоритеты:
подача заявки:
2010-08-18
публикация патента:

Изобретение относится к нефтехимической и химической промышленности, в частности к способу приготовления сформованных катализаторов конверсии метана в ароматические углеводороды и водород в неокислительных условиях. Описан катализатор для процесса неокислительной конверсии метана, включающий в свой состав высококремнеземный цеолит H-ZSM-5, связующую добавку - кальциевую форму монтмориллонита, модифицирующие элементы - молибден и кобальт, при этом содержание связующей добавки в катализаторе составляет не более 40.0 мас.%, молибдена не более 3.0 мас.% и кобальта не более 1.0 мас.%. Описан способ приготовления катализатора, включающий модификацию цеолита промотирующими элементами путем последовательной пропитки по влагоемкости цеолита H-ZSM-5 растворами солей молибдена и кобальта с последующим прокаливанием и последующее смешение модифицированного металлами цеолита с суспензией связующей добавки в заданной пропорции с получением формовочной массы и ее формовки в гранулы в формовочном устройстве. Описан также способ неокислительной конверсии метана в присутствии описанного выше катализатора. Технический результат - повышение эффективности процесса неокислительной конверсии метана за счет увеличения активности и стабильности катализатора. 3 н. и 1 з.п. ф-лы, 1 табл.

Изобретение относится к нефтехимической и химической промышленности, в частности к способу приготовления сформованных катализаторов конверсии метана в ароматические углеводороды и водород в неокислительных условиях.

Известно, что с целью промышленного внедрения процесса конверсии метана в ароматические углеводороды и водород в неокислительных условиях разрабатывают содержащие связующее цеолитные катализаторы, модифицированные молибденом [К.Honda, X.Chen, Z.-G. Zhang Preparation of highly active binder-added MoO3/H-ZSM-5 catalyst for the non-oxidative dehydroaromatization of methane. // Applied Catalysis A: General 351 (2008) 122-130].

Наиболее близким к предлагаемому катализатору является катализатор, содержащий 50 мас.% Mo/H-ZSM-5 и 50 мас.% SiO2 (или 50 мас.% Mo/H-ZSM-5 и 50 мас.% Al2O3), при этом содержание молибдена составляет 2.0 мас.% (что эквивалентно 3 мас.% МоО3), а SiO2 (или Al2 O3) выступают в качестве связующей добавки [К.Honda, X.Chen, Z.-G. Zhang Preparation of highly active binder-added MoO3/H-ZSM-5 catalyst for the non-oxidative dehydroaromatization of methane. // Applied Catalysis A: General 351 (2008) 122-130].

Наиболее близким к предлагаемому способу является способ получения Mo/H-ZSM-5+SiO2 (или Mo/H-ZSM-5+Al 2O3) содержащего связующее катализатора путем введения молибдена в цеолит H-ZSM-5 методом пропитки по влагоемкости раствором гептамолибдата аммония, высушивания, прокаливания и последующего добавления необходимого количества порошка SiO 2 (или Al2O3) связующего и дистиллированной воды. Приготовленную суспензию Mo/H-ZSM-5+SiO2 (или Mo/H-ZSM-5+Al2O3) катализатора высушивали и прокаливали на воздухе при 500°С в течение 4 ч [К.Honda, X.Chen, Z.-G. Zhang Preparation of highly active binder-added MoO3/H-ZSM-5 catalyst for the non-oxidative dehydroaromatization of methane. // Applied Catalysis A: General 351 (2008) 122-130].

Недостатком данного способа является высокое содержание связующего (50 мас.%), а также сравнительно низкая каталитическая активность в процессе неокислительной конверсии метана при температуре 700°С и объемной скорости подачи 3500 мл/гкат ч-1.

Наиболее близким к предлагаемому способу является способ неокислительной конверсии метана в присутствии цеолитного катализатора, модифицированного молибденом и содержащего связующую добавку SiO2 (или Al2O2 ) [К.Honda, X.Chen, Z.-G. Zhang Preparation of highly active binder-added MoO3/H-ZSM-5 catalyst for the non-oxidative dehydroaromatization of methane. // Applied Catalysis A: General 351 (2008) 122-130]. Способ осуществляют при температуре 700, объемной скорости 3500 мл/гкатч-1 и атмосферном давлении.

Задачей предлагаемого изобретения является получение катализатора, обеспечивающего повышение степени превращения метана и скорости образования бензола, и увеличение срока стабильного действия катализатора

Предложен катализатор для процесса неокислительной конверсии метана, включающий в свой состав высококремнеземный цеолит H-ZSM-5, связующую добавку, модифицирующие элементы: молибден и кобальт, в качестве связующей добавки он содержит кальциевую форму алюмосиликата монтмориллонита - Ca0.2(Al, Mg)2Si4O10 (OH)2·4H2O (CaM), содержание связующей добавки в катализаторе составляет не более 40.0 мас.%, предпочтительно 20.0-30.0 мас.%, молибдена не более 3.0 мас.%, предпочтительно 1.0-3.0 мас.%, и кобальта не более 1.0 мас.%, предпочтительно, 0.2-1.0 мас.%.

Предложен способ приготовления катализатора для процесса неокислительной конверсии метана, включающий модификацию цеолита промотирующими элементами путем последовательной пропитки по влагоемкости цеолита H-ZSM-5 растворами солей модифицирующих элементов, а именно солей молибдена и кобальта, с последующим прокаливанием и последующее смешение модифицированного металлами цеолита с суспензией связующего - кальциевой формы монтмориллонита в заданной пропорции с получением формовочной массы и ее формовки в гранулы в формовочном устройстве.

Описан способ неокислительной конверсии метана в присутствии сформованного в гранулы цеолитного катализатора при температуре 700-750°С, объемной скорости 1000-3500 мл/гкатч-1 и атмосферном давлении, характеризующийся тем, что используют описанный выше катализатор.

1) Mo/H-ZSM-5/SiO 2 катализаторы получают путем пропитки по влагоемкости цеолита H-ZSM-5 с мольным отношением Si/Al=17 раствором гептамолибдата аммония с последующим прокаливанием при температуре 500°С в течение 4 ч и последующим смешением полученного Mo/H-ZSM-5 с суспензией связующего SiO2 в заданной пропорции с получением формовочной массы и ее формовки в гранулы в формовочном устройстве. Приготовленные гранулы сушат с последующим прокаливанием при температуре при 500°С в течение 4 ч. В результате получают содержащие связующее катализаторы MoO3/H-ZSM-S+SiO 2, при этом содержание связующего SiO2 составляет не более 30.0 мас.%, молибдена не более 2 мас.%.

2) Mo/H-ZSM-5/Са-монтмориллонит катализаторы получают путем пропитки по влагоемкости цеолита H-ZSM-5 с мольным отношением Si/Al=17 раствором гептамолибдата аммония с последующим прокаливанием при температуре 500°С в течение 4 ч и с последующим смешением полученного Mo/H-ZSM-5 с суспензией связующего Са-монтмориллонит в заданной пропорции с получением формовочной массы и ее формовки в гранулы в формовочном устройстве. Приготовленные гранулы сушат с последующим прокаливанием при температуре при 500°С в течение 4 ч. В результате получают содержащие связующее катализаторы Mo/H-ZSM-5/Са-монтмориллонит, при этом содержание связующего Са-монтмориллонит составляет не более 30.0 мас.%, молибдена не более 2 мас.%.

3) Co-Mo/H-ZSM-5/SiO2 (или Co-Mo/H-ZSM-5/Са-монтмориллонит) катализаторы получают путем пропитки по влагоемкости цеолита H-ZSM-5 с мольным отношением Si/Al=17 раствором гептамолибдата аммония с последующим прокаливанием при температуре 500°С в течение 4 ч, затем пропитки по влагоемкости полученного Mo/H-ZSM-5 раствором нитрата кобальта с последующим прокаливанием при температуре 500°С в течение 4 ч, и последующее смешение полученного Co-Mo/H-ZSM-5 с суспензией связующего SiO 2 (или Са-монтмориллонит) в заданной пропорции с получением формовочной массы и ее формовки в гранулы в формовочном устройстве. Приготовленные гранулы сушат с последующим прокаливанием при температуре при 500°С в течение 4 ч. В результате получают содержащие связующее катализаторы Co-Mo/H-ZSM-5/SiO2 (или Co-Mo/H-ZSM-5/Са-монтмориллонит), при этом содержание связующего SiO2 (или Са-монтмориллонит) составляет не более 30.0 мас.%, молибдена не более 2 мас.% и кобальта от 0 до 1 мас.%.

Каталитическая активность и стабильность приготовленных со связующим катализаторов выше, чем катализаторов Mo/H-ZSM-S/SiO 2 (или Mo/H-ZSM-S/Al2O3), полученных по прототипу путем введения молибдена в цеолит H-ZSM-5 методом пропитки по влагоемкости раствором гептамолибдата аммония, высушивания, прокаливания и последующего добавления необходимого количества порошка SiO2 (или Al2O3) связующего и дистиллированной воды и содержащих 50 мас.% связующей добавки, при одинаковых условиях проведения процесса.

Сущность изобретения иллюстрируется следующими примерами и таблицей.

Пример 1.

К 150 г цеолита HZSM-5 с атомным отношением Si/Al=17 приливают при перемешивании расчетное количество пропиточного раствора гептамолибдата аммония NH 4)6Mo7O24·4H 2O (ГМА), полученного путем растворения 5.52 г ГМА в 115 мл воды. Полученную массу сушат под ИК лампой в течение 4 ч при периодическом перемешивании. Полученный сухой порошок прокаливают при 500°С в муфельной печи при 500°С в течение 4 ч. Приготовленный таким образом катализатор состава: 2 мас.% Mo/ZSM-5 (далее 2Mo/ZSM-5) прессуют в таблетки, крошат и отбирают для каталитических испытаний фракцию 0,5-1 мм.

Каталитические испытания образцов проводят в проточной установке при температуре 700°, при пропускании через слой катализатора смеси 90 об.% метана и 10% аргона при скорости подачи смеси 3500 мл/гкат ч-1 и атмосферном давлении. Аргон добавляют для контроля изменения объема продуктов реакции по сравнению с объемом исходной смеси. Катализатор в количестве 0,6 г (1 см3) помещают в трубчатый кварцевый реактор диаметром 9 мм. Перед началом реакции катализатор нагревают в токе аргона до 700°С и выдерживают при этой температуре 1 ч, затем в реактор подают метано-аргоновую смесь. Периодически продукты реакции отбирают шестиходовым краном с калиброванной пробоотборной петлей для газохроматографического анализа. Из данных анализа по концентрации бензола в продуктах реакции определяют показатели активности катализатора, в качестве которых выбраны: выход бензола в %, т.е. степень превращения исходного метана в бензол и удельная скорость превращения метана в бензол в нмольС/гкатс-1.

Исследования влияния времени реакции на активность катализатора показывают, что в течение 1-2 ч выход бензола достигает максимального значения, а затем после 3-4 ч работы катализатора постепенно снижается. Поэтому для оценки активности катализатора и стабильности его работы выбраны значении выхода бензола и удельной скорости образования бензола из метана после 2, 6 и 10 ч работы.

При работе катализатора 2% Mo/ZSM-5 отмечается существенное снижение активности, замеренной после 2 ч работы (выход бензола 3,9%, скорость образования бензола из метана 1480 нмольС/гкат с-1) после 6 ч работы (на 49%) и после 10 ч работы (еще на 20%).

Пример 2.

Аналогичен примеру 1, но после приготовления катализатора 2Mo/ZSM-5 к навеске катализатора 15,45 г приливают при перемешивании расчетное количество пропиточного раствора нитрата кобальта (Со(NO3) 26H2O), полученного путем растворения 0,462 г нитрата кобальта в 11,5 мл воды. Полученную массу сушат под ИК лампой в течение 4 ч при периодическом перемешивании. Полученный сухой порошок прокаливают при 500°С в муфельной печи при 500°С в течение 4 ч. Приготовленный таким образом катализатор состава: 0,5 мас% Со, 2 мас.% Mo/ZSM-5 (далее 0.5Co2Mo/ZSM-5) прессуют в таблетки, крошат и отбирают для каталитических испытаний фракцию 0,5-1 мм.

Результаты испытаний показывают как возрастание исходной активности катализатора в результате добавления кобальта после 2 ч работы (на 38,5%), так и улучшение стабильности работы, снижение активности после 6 ч работы на 24% и дальнейшее снижение после 10 ч работы на 4%.

Пример 3.

Аналогичен примеру 1, но к полученному катализатору 2Mo/ZSM-5 добавляют связующее SiO2 (Ludox LS colloidal silica) в соотношении: связующее SiO2 /катализатор=4/1. Для приготовления формовочной массы тщательно смешивают расчетные количества катализатора 2Mo/ZSM-5 и связующей добавки SiO2. Полученную формовочную массу загружают в формовочное устройство и осуществляют ее формование в гранулы. Отформованные гранулы-диаметром 4 мм и длиной 6 мм состава: 2Mo/ZSM-5/20SiO 2 сушат в сушильном шкафу при температуре 100°С в течение 4 ч, затем прокаливают в муфельной печи при 500°С в течение 4 ч. Механическая прочность полученых экструдатов на раздавливание составляет 9 кг/см2 по образующей и 48 кг/см2 по торцу гранулы.

При использовании в качестве связующего коллоидного раствора SiO2 только в случае концентрации связующей добавки 20% получают удовлетворительно формующуюся формовочную массу. При меньшем содержании SiO 2 - 10 мас.% наблюдают растекание полученной смеси, при большем - 30 мас.% происходит образование сухого неформующегося порошка.

Результаты испытаний катализатора 2Mo/ZSM-5/20SiO 2 показывают снижение исходной активности сформованного катализатора по сравнению с исходным катализатором 2Mo/ZSM-5 в результате добавления неактивного связующего после 2 ч работы на 23%, аналогичное снижение активности после 6 ч работы на 25%, после 10 ч работы на 25%. Динамика снижения активности сформованного катализатора аналогична динамике снижения активности катализатора без связующего.

Пример 4.

Аналогичен примеру 3, но к полученному катализатору 2Mo/ZSM-5 добавляют связующее - суспензию кальциевой формы монтмориллонита - Ca 0.2(Al,Mg)2Si4O10(OH) 2·4H2O (CaM) в соотношении: связующее/катализатор = 4/1. Для приготовления формовочной массы тщательно смешивают расчетные количества катализатора 2Mo/ZSM-5 и связующей добавки CaM. Предварительно готовят суспензию CaM путем проведения последовательных стадий гидратации высушенного CaM с образованием суспензии, ее диспергирования, фильтрации и подвяливания до влажности 68%. Полученную формовочную массу загружают в формовочное устройство и осуществляют ее формование в гранулы. Отформованные гранулы - диаметром 4 мм и длиной 6 мм состава: 2Mo/ZSM-5/20CaM сушат в сушильном шкафу при температуре 100°С в течение 4 ч, затем прокаливают в муфельной печи при 500°С в течение 4 ч.

Механическая прочность полученных экструдатов на раздавливание составляет 28 кг/см2 по образующей и 85 кг/см2 по торцу гранулы, что в 2-3 раза выше значений, полученных при использовании в качестве связующего SiO2 .

Результаты испытаний катализатора 2Mo/ZSM-5/20CaM показывают снижение исходной активности сформованного катализатора по сравнению с исходным катализатором 2MO/ZSM-5 в результате добавления неактивного связующего после 2 ч работы на 20%, аналогичное снижение активности после 6 ч работы на 21%, после 10 ч работы на 17%. Динамика снижения активности сформованного катализатора аналогична динамике снижения активности катализатора без связующего.

Пример 5.

Аналогичен примеру 3, но формованию подвергают катализатор 0,5Co2Mo/ZSM-5. Механическая прочность полученных экструдатов 0,5Co2Mo/ZSM-5/20SiO2 на раздавливание составляет 9 кг/см2 по образующей и 31 кг/см2 по торцу гранулы, что близко к значениям, полученным для катализатора 2Mo/ZSM-5/20SiO2.

Результаты испытаний катализатора 0,5Co2Mo/ZSM-5/20SiO2 показывают снижение исходной активности сформованного катализатора по сравнению с исходным катализатором 0,5Co2Mo/ZSM-5 в результате добавления неактивного связующего после 2 ч работы на 21%, аналогичное снижение активности после 6 ч работы на 20%, после 10 ч работы на 20%. Динамика снижения активности сформованного катализатора аналогична динамике снижения активности катализатора без связующего. Добавка кобальта обеспечивает более высокую исходную активность катализатора (на 43%) по сравнению со сформованным катализатором без добавки кобальта и более высокую стабильность работы: снижение активности после 10 ч на 26% по сравнению с 70% для сформованного катализатора, не содержащего кобальт.

Пример 6.

Аналогичен примеру 5, но в качестве связующего используют СаМ. Механическая прочность полученных экструдатов 0,5Co2Mo/ZSM-5/20CaM на раздавливание составляет 24 кг/см2 по образующей и 59 кг/см2 по торцу гранулы, что существенно выше по сравнению с аналогичным сформованным катализатором, в котором в качестве связующего использовали SiO2.

Результаты испытаний катализатора 0,5Co2Mo/ZSM-5/20CaM показывают снижение исходной активности сформованного катализатора по сравнению с исходным катализатором 0,5Co2Mo/ZSM-5 в результате добавления неактивного связующего после 2 ч работы на 19%, аналогичное снижение активности после 6 ч работы на 15%, после 10 ч работы на 15%. Динамика снижения активности сформованного катализатора аналогична динамике снижения активности катализатора без связующего, но снижение активности после 10 ч работы составляет 23%, что ниже снижения активности катализатора без связующего - 26%, то есть катализатор со связующим проявляет более высокую стабильность. Добавка кобальта обеспечивает более высокую исходную активность катализатора (на 42%) по сравнению со сформованным катализатором без добавки кобальта (пример 4) и более высокую стабильность работы: снижение активности после 10 ч на 23% по сравнению с 68% для сформованного катализатора, не содержащего кобальт. По сравнению с прототипом активность катализатора после 2 ч работы выше в 2,7 раза, а после 6 ч работы выше в 4,6 раза.

Пример 7.

Аналогичен примеру 6, но содержание связующего в катализаторе 0,5Co2Mo/ZSM-5/30CaM составляет 30%. Прочность катализатора на раздавливание 57 кг/см2 по образующей и 189 кг/см2 по торцу гранулы, что существенно выше по сравнению с аналогичным сформованным катализатором, в котором содержание связующего - СаМ составляло 20%.

Результаты испытаний катализатора 0,5Co2Mo/ZSM-5/30CaM показывают снижение исходной активности сформованного катализатора по сравнению с исходным катализатором 0,5Co2Mo/ZSM-5 в результате добавления неактивного связующего после 2 ч работы на 26%, снижение активности после 6 ч работы на 17%, после 10 ч работы на 18%. Динамика снижения активности сформованного катализатора аналогична динамике снижения активности катализатора без связующего, но снижение активности после 10 ч работы составляет 20%, что ниже снижения активности катализатора без связующего - 28%, то есть катализатор со связующим проявляет более высокую стабильность. Добавка кобальта обеспечивает более высокую исходную активность катализатора (на 29%) по сравнению со сформованным катализатором без добавки кобальта (пример 4) и более высокую стабильность работы: снижение активности после 10 ч на 20% по сравнению с 68% для сформованного катализатора, не содержащего кобальт. По сравнению с прототипом активность катализатора после 2 ч работы выше в 2,5 раза, а после 6 ч работы выше в 4,5 раза.

Пример 7.

Аналогичен примеру 7, но содержание связующего в катализаторе 0,5Co2Mo/ZSM-5/40CaM составляет 40%. Прочность катализатора на раздавливание 60 кг/см 2 по образующей и 195 кг/см2 по торцу гранулы, что незначительно выше по сравнению с аналогичным сформованным катализатором, в котором содержание связующего - СаМ составляет 30%.

Результаты испытаний катализатора 0,5Co2Mo/ZSM-5/30CaM показывают снижение исходной активности сформованного катализатора по сравнению с исходным катализатором 0,5Co2Mo/ZSM-5 в результате добавления неактивного связующего после 2 ч работы на 41%, аналогичное снижение активности после 6 ч работы на 42%, после 10 ч работы на 41%.

Динамика снижения активности сформованного катализатора аналогична динамике снижения активности катализатора без связующего, снижение активности после 10 ч работы составляет 28%, что соответствует снижению активности катализатора без связующего - 28%, то есть катализатор с 40% связующего - СаА проявляет аналогичную стабильность. Добавка кобальта обеспечивает незначительное увеличение исходной активности катализатора (на 2,5%) по сравнению со сформованным катализатором без добавки кобальта (пример 4), но с меньшим содержанием связующего (20%) и более высокую стабильность работы: снижение активности после 10 ч на 28% по сравнению с 68% для сформованного катализатора, не содержащего кобальт. По сравнению с прототипом активность катализатора после 2 ч работы выше в 2 раза, а после 6 ч работы выше в 3,2 раза.

В таблице представлены сравнительные характеристики каталитической активности и стабильности образцов.

Как видно из данных таблицы, предлагаемый состав и способ приготовления катализатора позволяют получить катализатор, отличающийся от прототипа более высокой активностью и стабильностью в реакции неокислительной конверсии метана с получением бензола. При этом использование в качестве связующего кальциевой формы монтмориллонита более предпочтительно по сравнению с использованием SiO2, так как при близких значениях активности и селективности связующее CaA обеспечивает более высокую прочность гранул.

катализатор, способ его приготовления и процесс неокислительной   конверсии метана, патент № 2438779

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Катализатор для процесса неокислительной конверсии метана, включающий в свой состав высококремнеземный цеолит H-ZSM-5, связующую добавку, модифицирующий элемент - молибден, отличающийся тем, что в качестве связующей добавки он содержит кальциевую форму монтмориллонита, а в качестве модифицирующих элементов молибден и кобальт, причем содержание связующей добавки в катализаторе составляет не более 40,0 мас.%, молибдена не более 3,0 мас.% и кобальта не более 1,0 мас.%.

2. Катализатор по п.1, отличающийся тем, что содержание связующей добавки в катализаторе, предпочтительно, составляет 20,0-30,0 мас.%, молибдена 1,0-3,0 мас.% и кобальта 0,2-1,0 мас.%.

3. Способ приготовления катализатора для процесса неокислительной конверсии метана, включающий модификацию цеолита промотирующими элементами путем последовательной пропитки по влагоемкости цеолита H-ZSM-5 растворами солей модифицирующих элементов с последующим прокаливанием и последующее смешение модифицированного металлами цеолита с суспензией связующей добавки в заданной пропорции с получением формовочной массы и ее формовки в гранулы в формовочном устройстве, отличающийся тем, что связующая добавка представляет собой суспензию кальциевой формы монтмориллонита, а в качестве солей модифицирующих элементов применяют растворы солей молибдена и кобальта, в результате чего получают катализатор, содержание связующей добавки в котором составляет не более 40,0 мас.%, молибдена не более 3,0 мас.% и кобальта не более 1,0 мас.%.

4. Способ неокислительной конверсии метана в присутствии сформованного в гранулы цеолитного катализатора при температуре 700-750°С, объемной скорости 1000-3500 мл/гкатч-1 и атмосферном давлении, отличающийся тем, что используют катализатор по любому из пп.1 и 2 или приготовленный по п.3.


Скачать патент РФ Официальная публикация
патента РФ № 2438779

patent-2438779.pdf
Патентный поиск по классам МПК-8:

Класс B01J29/48 содержащие мышьяк, сурьму, висмут, ванадий, ниобий, тантал, полоний, хром, молибден, вольфрам, марганец, технеций или рений

Патенты РФ в классе B01J29/48:
способ активации молибден-цеолитного катализатора ароматизации метана -  патент 2525117 (10.08.2014)
цеолитсодержащий катализатор депарафинизации масляных фракций -  патент 2518468 (10.06.2014)
способ приготовления катализатора для получения ароматических углеводородов, катализатор, приготовленный по этому способу, и способ получения ароматических углеводородов с использованием полученного катализатора -  патент 2515511 (10.05.2014)
способ приготовления катализатора для получения бензола из метана, катализатор, приготовленный по этому способу, и способ получения бензола из метана с использованием полученного катализатора -  патент 2508164 (27.02.2014)
получение ароматических соединений из метана -  патент 2491120 (27.08.2013)
цеолитсодержащий катализатор, способ его получения и способ превращения низкооктановых бензиновых фракций в высокооктановый бензин без и в присутствии водорода -  патент 2480282 (27.04.2013)
цеолитсодержащий катализатор, способ его получения и способ превращения алифатических углеводородов c2-c12 и метанола в высокооктановый бензин и ароматические углеводороды -  патент 2478007 (27.03.2013)
непрерывный способ бескислородной конверсии метана -  патент 2467993 (27.11.2012)
катализатор дегидрирования, способ его получения и способ получения олефиновых углеводородов c2-c5 с использованием этого катализатора -  патент 2463109 (10.10.2012)
способ превращения этилбензола и способ получения пара-ксилола -  патент 2448937 (27.04.2012)

Класс B01J23/75 кобальт

Патенты РФ в классе B01J23/75:
катализатор для окисления сернистых соединений -  патент 2529500 (27.09.2014)
способ получения тонкодисперсной жидкой формы фталоцианинового катализатора демеркаптанизации нефти и газоконденсата -  патент 2529492 (27.09.2014)
способ получения ультранизкосернистых дизельных фракций -  патент 2528986 (20.09.2014)
способ и устройство для изготовления частиц защищенного катализатора с помощью расплавленного органического вещества -  патент 2528424 (20.09.2014)
катализатор для переработки тяжелого нефтяного сырья и способ его приготовления -  патент 2527573 (10.09.2014)
способ оптимизации функционирования установки для синтеза углеводородов из синтез-газа путем контроля парциального давления со -  патент 2525291 (10.08.2014)
способ приготовления гетерогенного фталоцианинового катализатора для окисления серосодержащих соединений -  патент 2523459 (20.07.2014)
регенерация катализатора фишера-тропша путем его окисления и обработки смесью карбоната аммония, гидроксида аммония и воды -  патент 2522324 (10.07.2014)
способы гидрокрекинга с получением гидроизомеризованного продукта для базовых смазочных масел -  патент 2519547 (10.06.2014)
катализаторы -  патент 2517700 (27.05.2014)

Класс B01J23/882 и кобальтом

Патенты РФ в классе B01J23/882:
способ активации катализаторов гидроочистки дизельного топлива -  патент 2500475 (10.12.2013)
катализатор гидроочистки углеводородного сырья, носитель для катализатора гидроочистки, способ приготовления носителя, способ приготовления катализатора и способ гидроочистки углеводородного сырья -  патент 2478428 (10.04.2013)
композитный оксид катализатора риформинга углеводородов, способ его получения и способ получения синтез-газа с его использованием -  патент 2476267 (27.02.2013)
катализатор, способ его приготовления и способ получения малосернистого дизельного топлива -  патент 2474474 (10.02.2013)
катализатор, способ приготовления носителя, способ приготовления катализатора и способ гидроочистки углеводородного сырья -  патент 2472585 (20.01.2013)
катализаторы гидродеметаллирования и гидродесульфуризации и применение в способе соединения в одном составе -  патент 2444406 (10.03.2012)
селективные катализаторы для гидродесульфурации нафты -  патент 2418037 (10.05.2011)
катализатор гидроочистки углеводородного сырья, способ его приготовления и процесс гидроочистки -  патент 2402380 (27.10.2010)
способ селективного обессеривания лигроина и катализатор для его осуществления -  патент 2396114 (10.08.2010)
катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления -  патент 2386476 (20.04.2010)

Класс B01J21/16 глины или прочие минеральные силикаты

Патенты РФ в классе B01J21/16:
катализатор для переработки тяжелого нефтяного сырья и способ его приготовления -  патент 2527573 (10.09.2014)
шариковый катализатор крекинга "адамант" и способ его приготовления -  патент 2517171 (27.05.2014)
каталитическая добавка для повышения октанового числа бензина каталитического крекинга и способ ее приготовления -  патент 2516847 (20.05.2014)
содержащие вольфрамовые соединения катализаторы и способ дегидратации глицерина -  патент 2487754 (20.07.2013)
способ регенерации катализатора, используемого при дегидратации глицерина -  патент 2484895 (20.06.2013)
микросферический катализатор для крекинга нефтяных фракций и способ его приготовления -  патент 2473385 (27.01.2013)
микросферический бицеолитный катализатор для повышения октанового числа бензина крекинга вакуумного газойля и способ его приготовления -  патент 2473384 (27.01.2013)
микросферический катализатор для снижения содержания серы в бензине крекинга и способ его приготовления -  патент 2472586 (20.01.2013)
способ переработки бензинов термических процессов и катализатор для его осуществления -  патент 2469070 (10.12.2012)
способ приготовления блочных сотовых кордиеритовых катализаторов очистки отработавших газов двигателей внутреннего сгорания -  патент 2442651 (20.02.2012)

Класс B01J29/46 металлы группы железа или медь

Патенты РФ в классе B01J29/46:
способ получения scr-активного цеолитного катализатора и scr-активный цеолитный катализатор -  патент 2506999 (20.02.2014)
цеолитсодержащий катализатор, способ его получения и способ превращения низкооктановых бензиновых фракций в высокооктановый бензин без и в присутствии водорода -  патент 2480282 (27.04.2013)
цеолитсодержащий катализатор, способ его получения и способ превращения алифатических углеводородов c2-c12 и метанола в высокооктановый бензин и ароматические углеводороды -  патент 2478007 (27.03.2013)
способ приготовления катализатора для разложения закиси азота и процесс обезвреживания газовых выбросов, содержащих закись азота -  патент 2477177 (10.03.2013)
способ ароматизации неароматических углеводородов -  патент 2449978 (10.05.2012)
катализаторы и способы синтезирования алифатических углеводородов из co и h2 -  патент 2432204 (27.10.2011)
бифункциональный кобальтсодержащий цеолитный катализатор, способ его получения и способ получения ароматических углеводородов -  патент 2407730 (27.12.2010)
цеолитсодержащий катализатор конверсии углеводородов, способ его приготовления и способ превращения углеводородных нефтепродуктов с использованием этого катализатора -  патент 2372142 (10.11.2009)
цеолитсодержащий катализатор, способ его получения и способ превращения алифатических углеводородов c2-c 12 в ароматические углеводороды или высокооктановый компонент бензина -  патент 2333035 (10.09.2008)
катализатор для получения жидких углеводородов из диметилового эфира -  патент 2322294 (20.04.2008)

Класс B01J37/02 пропитывание, покрытие или осаждение

Патенты РФ в классе B01J37/02:
способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
вольфрамкарбидные катализаторы на мезопористом углеродном носителе, их получение и применения -  патент 2528389 (20.09.2014)
катализатор для переработки тяжелого нефтяного сырья и способ его приготовления -  патент 2527573 (10.09.2014)
катализатор для процесса гидродепарафинизации и способ его получения -  патент 2527283 (27.08.2014)
способ приготовления катализатора и способ получения пероксида водорода -  патент 2526460 (20.08.2014)
катализатор для получения синтетических базовых масел и способ его приготовления -  патент 2525119 (10.08.2014)
конструктивный элемент с антимикробной поверхностью и его применение -  патент 2523161 (20.07.2014)
катализатор для получения синтетических базовых масел в процессе соолигомеризации этилена с альфа-олефинами с6-с10 и способ его приготовления -  патент 2523015 (20.07.2014)
способ получения каталитического покрытия для очистки газов -  патент 2522561 (20.07.2014)
способ изготовления металл-углерод содержащих тел -  патент 2520874 (27.06.2014)

Класс C07C15/04 бензол 

Патенты РФ в классе C07C15/04:
способ получения ароматических углеводородов -  патент 2523801 (27.07.2014)
способ приготовления катализатора для получения бензола из метана, катализатор, приготовленный по этому способу, и способ получения бензола из метана с использованием полученного катализатора -  патент 2508164 (27.02.2014)
способ улучшения катализатора ароматизации -  патент 2476412 (27.02.2013)
непрерывный способ бескислородной конверсии метана -  патент 2467993 (27.11.2012)
способ получения катализатора гидродехлорирования -  патент 2462311 (27.09.2012)
получение ароматических соединений из алифатических -  патент 2461537 (20.09.2012)
получение ароматических соединений из метана -  патент 2459789 (27.08.2012)
получение ароматических углеводородов и синтез-газа из метана -  патент 2458899 (20.08.2012)
получение ароматических соединений из метана -  патент 2454390 (27.06.2012)
способ превращения метана -  патент 2454389 (27.06.2012)

Класс C07C2/76 конденсацией углеводородов с частичным отщеплением водорода


Наверх