способ изготовления носителя катализатора из отработанного катализатора

Классы МПК:B01J23/94 катализаторов, содержащих металлы, оксиды или гидроксиды металлов группы железа или меди
B01J21/06 кремний, титан, цирконий или гафний; их оксиды или гидроксиды
B01J23/74 металлы группы железа
B01J23/84 с мышьяком, сурьмой, висмутом, ванадием, ниобием, танталом, полонием, хромом, молибденом, вольфрамом, марганцем, технецием или рением
B01J38/68 включая по существу растворение или химическое осаждение каталитического компонента в конечной стадии перестройки катализатора
C07C1/04 реакцией оксида углерода с водородом 
Автор(ы):,
Патентообладатель(и):ШЕЛЛ ИНТЕРНЭШНЛ РИСЕРЧ МААТСХАППИЙ Б.В. (NL)
Приоритеты:
подача заявки:
2005-12-21
публикация патента:

Изобретение относится к способу изготовления, а, кроме того, к способу рециркуляции или повторного использования материала-носителя катализатора такого, который применяется в процессе Фишера-Тропша. Описан способ изготовления материала-носителя катализатора из отработанного катализатора Фишера-Тропша на носителе, содержащего диоксид титана и кобальт, который включает: дробление отработанного катализатора на носителе; выщелачивание, по меньшей мере, 50% мас., кобальта из дробленного отработанного катализатора и дополнительное дробление полученного материала-носителя. Также описаны материал-носитель катализатора, изготовленный вышеописанным способом, применение данного материала-носителя катализатора, катализатор, содержащий данный материал-носитель и способ получения углеводородов с применением катализатора, содержащего данный материал-носитель. Технический результат - возможность применения отработанных материалов-носителей катализатора, которые обычно выбрасываются, а также обеспечение способа более эффективной рециркуляции активного компонента. 5 н. и 7 з.п. ф-лы.

Формула изобретения

1. Способ изготовления материала-носителя катализатора из отработанного катализатора Фишера-Тропша на носителе, содержащего диоксид титана и кобальт, который включает:

дробление отработанного катализатора на носителе;

выщелачивание, по меньшей мере, 50 мас.% кобальта из дробленного отработанного катализатора и

дополнительное дробление полученного материала-носителя.

2. Способ по п.1, дополнительно включающий стадию смешивания части или всего дополнительно дробленного материала-носителя с новым диоксидом титана, используемым в качестве материала-носителя катализатора.

3. Способ по п.2, в котором дополнительно дробленный материал-носитель имеет первый средний размер частиц, новый материал-носитель имеет второй средний размер частиц и комбинированный материал-носитель имеет третий размер частиц.

4. Способ по п.2, в котором дополнительно дробленный материал-носитель имеет первое отношение анатаз:рутил в диоксиде титана, новый материал-носитель имеет второе отношение анатаз:рутил в диоксиде титана, и комбинированный материал-носитель имеет третье отношение анатаз:рутил в диоксиде титана.

5. Способ по любому из пп.1-4, в котором отработанный катализатор Фишера-Тропша на носителе дополнительно содержит марганец.

6. Способ по любому из пп.1-4, в котором материал-носитель катализатора, полученный после стадии выщелачивания, кальцинируют.

7. Способ по любому из пп.1-4, в котором материал-носитель отработанного катализатора используют повторно в качестве материала-носителя катализатора.

8. Способ по любому из пп.1-4, в котором по меньшей мере 80 мас.% кобальта выщелачивают из измельченного отработанного катализатора.

9. Материал-носитель катализатора, изготовленный способом по любому из предшествующих пп.1-8.

10. Применение материала-носителя катализатора по п.9 в процессе Фишера-Тропша.

11. Катализатор, содержащий материал-носитель катализатора по п.9 и кобальт.

12. Способ получения углеводородов с применением катализатора по п.11.

Описание изобретения к патенту

Настоящее изобретение относится к способу изготовления, а, кроме того, к способу рециркуляции или повторного использования материала-носителя катализатора такого, который применяется в процессе Фишера-Тропша. Предпочтительно материал-носитель отработанного катализатора Фишера-Тропша используется для изготовления нового катализатора Фишера-Тропша.

Процесс Фишера-Тропша может применяться для конверсии углеводородсодержащего сырья в жидкие и/или твердые углеводороды. Промышленное сырье (например, природный газ, попутный газ и/или метан угольных пластов, биомасса, нефтяные остатки и уголь) конвертируется на первой стадии в смесь водорода и монооксида углерода (эта смесь часто называется синтез-газом или сингазом). Затем синтез-газ подается в реактор, в котором он конвертируется при участии соответствующего катализатора при повышенной температуре и давлении в парафиновые соединения от метана до высокомолекулярных соединений, содержащих до 200 углеродных атомов или при определенных условиях даже больше.

Катализаторы обычно имеют активную часть, например, металл или металлсодержащий компонент, закрепленный на материале-носителе, который может быть в форме пористого огнеупорного оксида, такого как диоксид титана, диоксид кремния или оксид алюминия. Катализаторы дезактивируются со временем, и поэтому их необходимо периодически заменять с целью поддержания приемлемого выхода продукта.

Например, закрепленный кобальтовый катализатор в настоящее время используется в качестве катализатора реакции Фишера-Тропша, а также в некоторых других областях. Вредное действие на катализатор оказывают катализаторные яды, включающие целый ряд различных соединений, например, серо-, натрий-, азот- или углеродсодержащих соединений, которые все дезактивируют катализатор. Кроме того, может снижаться дисперсность металла или металлсодержащего компонента.

Помимо этого, спекание и агломерация частиц носителя сокращают площадь поверхности носителя и, как следствие, активность катализатора.

Как только экономические затраты на отключение реактора и замену катализатора становятся меньше, чем теряемая вследствие дезактивации катализатора прибыль, реактор отключают и катализатор заменяют. Дезактивированный катализатор можно обработать, например, азотной кислотой для вымывания некоторой части или предпочтительно всего количества относительно дорогостоящего кобальта, который можно выделить и использовать повторно. Однако носитель традиционно выбрасывается.

Целью настоящего изобретения является повторное использование материалов-носителей.

Согласно настоящему изобретению обеспечивается способ изготовления материала-носителя катализатора, который включает:

- получение отработанного материала-носителя катализатора путем выщелачивания каталитических компонентов из отработанного катализатора на носителе и

- дробление указанного материала-носителя катализатора таким образом, чтобы часть или весь раздробленный материал можно было использовать повторно, предпочтительно в качестве материала-носителя катализатора.

Благодаря этому, отработанный материал-носитель катализатора может использоваться повторно.

Таким образом, изобретение обеспечивает способ повторного применения материала-носителя катализатора, который включает:

- получение отработанного материала-носителя катализатора и

- дробление указанного материала-носителя катализатора путем выщелачивания каталитических компонентов из отработанного катализатора на носителе таким образом, чтобы часть или весь раздробленный материал можно было использовать повторно.

Изобретение обеспечивает также способ изготовления материала-носителя катализатора, включающий получение отработанного материала-носителя катализатора и дробление указанного материала-носителя катализатора.

Предпочтительно отработанный материал-носитель катализатора представляет собой кристаллический материал-носитель катализатора, соответственно кристаллические пористые огнеупорные оксиды.

Более предпочтительно материал-носитель катализатора представляет собой материал-носитель катализатора высокой кристалличности.

Пригодные для указанной цели материалы-носители катализатора включают огнеупорные оксиды, преимущественно пористые огнеупорные оксиды, такие как диоксид кремния, диоксид титана (рутил и анатаз), диоксид циркония, способ изготовления носителя катализатора из отработанного катализатора, патент № 2409421 -кварц, оксид алюминия, например, способ изготовления носителя катализатора из отработанного катализатора, патент № 2409421 -оксид алюминия, способ изготовления носителя катализатора из отработанного катализатора, патент № 2409421 -оксид алюминия, способ изготовления носителя катализатора из отработанного катализатора, патент № 2409421 -оксид алюминия, алюмосиликаты (Al2SiO4 ), диоксид кремния/оксид алюминия (например, ASA) и их смеси. Пригодными являются также CoTiO3, CoSiO3 , MnTiO3, CoAl2O4, MnAl 2O4 или их смеси, образование которых может происходить в течение срока службы катализатора и которые пригодны для применения в качестве материалов-носителей катализатора. Предпочтительно материал-носитель катализатора содержит, по меньшей мере, 90% мас. только одного материала-носителя в пересчете на общую массу материала-носителя; более предпочтительно, по меньшей мере, 95% мас.; наиболее предпочтительно - 98% мас. В случае смесей может происходить некоторое разделение на фазы, результатом чего является снижение однородности материала.

Предпочтительно способ настоящего изобретения обеспечивает также стадию обработки только части или всего отработанного катализатора для удаления части его активного компонента(ов). Пригодным способом для этого является способ выщелачивания кислотой или основанием, в ходе которого отработанный катализатор контактирует с раствором кислоты или основания, в котором растворяется его активный компонент. Можно использовать неорганические кислоты, например, соляную кислоту, азотную кислоту, серную кислоту, фосфорную кислоту, а также органические кислоты, например, муравьиную кислоту, уксусную кислоту, щавелевую кислоту, бензойную кислоту и др. Пригодными основаниями являются гидроксид натрия, гидроксид калия и гидроксид кальция. Азотная кислота (или, например, смесь азотной кислоты с соляной кислотой) очень подходит для удаления некоторых активных компонентов, главным образом, железа, кобальта и никеля. При этом могут также удаляться загрязнители, такие как натрий, азот и сера, которые могут присутствовать в отработанном катализаторе.

Проведен анализ образца диоксида титана после выщелачивания. Образец диоксида титана предварительно был использован в качестве материала-носителя катализатора, наряду с кобальтом в качестве активного компонента и марганцем в качестве промотора. Он содержал, как было установлено, 0,1% мас. кобальта и 0,1% мас. марганца и имел средний размер кристаллов 40-50 нм.

Можно удалить, по меньшей мере, 50% мас. активного компонента; предпочтительно, по меньшей мере, 80% мас.; более предпочтительно, по меньшей мере, 90% мас. Активным компонентом преимущественно является кобальт.

Предпочтительно отработанный материал-носитель катализатора дробится перед удалением из него активного компонента, более предпочтительно - частично дробится с тем, чтобы облегчить процесс удаления активного компонента. Это частичное или предварительное дробление предпочтительно уменьшает размер частиц до величины от 10 до 15 мкм.

Необязательно отработанный катализатор кальцинируется с целью удаления некоторых дезактивированных соединений, таких как серо- и/или углеродсодержащие соединения. Обычно кальцинирование проводится после удаления части активного компонента. Обычно кальцинирование осуществляется после начальной стадии дробления. Кальцинирование обычно проводится на воздухе при температурах от 200 до 800°С, преимущественно от 300 до 650°С, в течение от 0,5 до 18 часов.

Отработанный материал-носитель катализатора предпочтительно дробится до достижения требуемого среднего размера частиц. Дробление предпочтительно проводится после кальцинирования. Предпочтительно средний размер частиц после дробления составляет менее 1 мкм.

Дробление можно осуществлять таким образом, чтобы скорее разрушались агломерированные частицы на единичные частицы, чем отдельные частицы, поскольку для дробления отдельной частицы требуется непропорционально более высокое количество энергии, чем для дробления агломератов единичных частиц.

Предпочтительно способ настоящего изобретения включает также стадию смешивания раздробленного отработанного материала-носителя катализатора с новым материалом-носителем катализатора перед его повторным использованием.

Термин "новый материал-носитель катализатора" в контексте настоящего описания включает материалы-носители катализатора, которые являются свежеизготовленными, не отработанными и не использовались ранее в качестве материала-носителя катализатора.

Обычно раздробленный отработанный материал-носитель катализатора имеет средний размер частиц 1000 нм, которые образовались из агломерированных первичных частиц размером около 40-50 нм. Предпочтительно новый материал-носитель катализатора имеет средний размер первичных частиц 30 нм, что позволяет получить комбинированный (отработанный + новый) материал-носитель катализатора со средним размером кристаллов третьего, заданного размера, например, около 35 нм.

Первичные частицы - это те частицы, которые можно увидеть под трансмиссионным электронным микроскопом (ТЕМ), или средний размер которых рассчитывается исходя из площади поверхности.

В случае кристаллических материалов первичные частицы представляют собой кристаллы.

Предпочтительно, по меньшей мере, 5% комбинированного катализатора составляет отработанный катализатор, более предпочтительно, по меньшей мере, 10% комбинированного катализатора составляет отработанный катализатор. В определенных вариантах осуществления изобретения новый и отработанный материалы-носители катализатора смешиваются в отношении 1:1.

Обычно отработанный материал-носитель катализатора можно использовать вторично, предпочтительно в качестве материала-носителя катализатора.

Повторно используемый материал-носитель катализатора можно комбинировать с активным компонентом путем предварительного смешивания и экструзии, распылительной сушки, пропитки или любым другим традиционным способом.

Предпочтительно содержание активного компонента, который остается на отработанном материале-носителе катализатора (или та часть активного компонента, оставшаяся после удаления некоторого его количества), определяют перед добавлением дополнительного активного компонента к комбинированному материалу-носителю катализатора перед его повторным применением. Типичными активными компонентами являются кобальт, железо или рутений либо их комбинации.

Предпочтительно, чтобы остаточное содержание любого промотора на отработанном материале-носителе катализатора определялось еще до добавления дополнительного промотора к комбинированному материалу-носителю катализатора. Типичные промоторы включают марганец, рутений, платину, рений, цирконий, ванадий и др. На практике примерно 80% мас. промотора (от массы только металла) может оставаться как остаточное содержание на материале-носителе катализатора. Предпочтительно, по меньшей мере, 40% мас. первоначального промотора (от массы только металла) остается на носителе, более предпочтительно - 60% мас., наиболее предпочтительно - 80% мас. Следует иметь в виду, что термин "каталитические компоненты" относится к каталитически активным металлсодержащим компонентам (например, кобальту, железу, никелю и др.) и не включает соединения-промоторы (например, рений, платину, марганец, ванадий и др.).

Соотношение кристаллических форм материала-носителя, например, диоксида титана, можно также сбалансировать, если определить содержание кристаллических форм в отработанном катализаторе и учесть его при комбинировании с новым катализатором. Например, в случае повторного использования диоксида титана заданное пропорциональное отношение анатаз:рутил может составлять 80%:20%. Если же количество анатаза в отработанном материале-носителе катализатора ниже, например, 70%, а количество рутила выше, например, 30%, то смешивание с новым диоксидом титана можно проводить при пропорционально более высоком количестве анатаза, к примеру, 90% и при более низком количестве рутила, к примеру, 10%. Это обеспечит общее содержание анатаза/рутила в комбинации из отработанного и нового диоксида титана, соответствующее указанному выше, заданному соотношению - 80% анатаза и 20% рутила.

Долю такой кристаллической формы диоксида титана, как брукит, также можно увеличить таким путем. Некоторые материалы-носители катализатора могут содержать, например, 70% брукита и 30% рутила. В таком случае нет необходимости смешивать отработанный материал-носитель катализатора с новым материалом-носителем катализатора для достижения той доли материала или кристаллической фазы, какая использовалась ранее, поскольку можно применять другие пропорции или смеси. Например, новый брукит можно добавить к отработанному материалу-носителю катализатора, который ранее был приготовлен, в основном, из анатаза и рутила без брукита.

В случае рециркуляции оксида алюминия отношение кристаллических форм оксида алюминия (альфа, гамма и тэта) можно также регулировать путем соответствующего подбора пропорциональных количеств различных кристаллических форм в новом материале-носителе катализатора с тем, чтобы обеспечить заданное отношение различных кристаллических форм в комбинированном материале-носителе катализатора.

Следующее преимущество определенных вариантов осуществления изобретения заключается в пропорции между новым рутилом и анатазом, требуемой для достижения заданного отношения при смешивании с отработанным диоксидом титана: эту новую пропорцию легче обеспечить в промышленном масштабе, чем заданное отношение, и, благодаря этому, повторное применение отработанного диоксида титана и смешивание его с новым диоксидом титана может позволить использовать менее дорогостоящий новый диоксид титана.

Варианты осуществления изобретения обеспечивают преимущество тем, что они требуют меньшего количества промотора и/или активного компонента, поскольку отработанный носитель катализатора может иметь остаточное содержание этого материала. Это особенно справедливо в случае марганца, который используется в катализаторах, в основном, в комбинации с кобальтом. По всей видимости, на пористых огнеупорных оксидах, преимущественно диоксиде титана, такой марганецсодержащий слой формируется на поверхности. Это означает, что при повторном применении отработанного носителя катализатора можно использовать значительно меньшее количество промотора, поскольку не весь, а только небольшая часть марганца в качестве промотора вымывается из носителя.

Варианты осуществления изобретения обеспечивают преимущество тем, что рециркулируемый материал-носитель катализатора не стремится абсорбировать часть вновь добавляемого активного компонента, а скорее активный компонент остается на его поверхности, облегчая, тем самым, течение реакции, которую он катализирует. Это можно объяснить тем, что рециркулируемый материал-носитель катализатора все еще содержит остаточное количество абсорбированного на нем активного компонента, даже если основная часть первоначального активного компонента была удалена, например, выщелачиванием.

Следовательно, в случае повторного применения материала-носителя катализатора может потребоваться более низкое количество активного компонента.

Варианты осуществления изобретения обеспечивают преимущество тем, что комбинированный материал-носитель катализатора, включающий отработанный и новый материалы-носители катализатора, может содержать какую-то долю частиц большего размера, чем новый материал-носитель. Комбинация частиц различного размера добавляет прочности катализатору. Например, при повторном применении диоксида титана использованные частицы рутила будут иметь больший размер, чем новые частицы рутила, что приводит к получению комбинированного носителя (из нового и отработанного носителей) большей прочности по сравнению с полностью новым носителем традиционного изготовления.

Для вариантов осуществления настоящего изобретения установлено также, что старение материала-носителя катализатора происходит медленнее в случае использования рециркулируемого материала.

Традиционный способ удаления активного компонента из материала-носителя очень жесткий из-за высокой стоимости активного компонента. В определенных вариантах осуществления настоящего изобретения способ удаления активного компонента может быть менее жестким и за счет этого значительно менее дорогостоящим, поскольку активный компонент может оставаться на материале-носителе катализатора и таким путем использоваться повторно.

Еще одним преимуществом такого варианта осуществления изобретения является то, что следовые количества примесей, обычно обнаруживаемые в новых материалах-носителях, например, TiOCl2, являющегося примесью в некоторых видах диоксида титана, намного ниже в рециркулируемом материале, поскольку они вымываются из диоксида титана с помощью HCl еще в процессе его предшествующего применения. Эти примеси снижают активность катализатора, могут нанести вред оборудованию и могут комбинироваться с углеводородами с образованием нежелательных хлоро-углеводородных примесей, а за счет рециркуляции материала-носителя их количество предпочтительно минимизируется.

Таким образом, варианты осуществления настоящего изобретения обеспечивают преимущество тем, что в них количество указанных примесей, подлежащих удалению, намного меньше.

Рециркулируемый материал может использоваться повторно и после этого рециркулировать еще много раз.

Следовательно, изобретение обеспечивает также применение носителя катализатора, изготовленного, по меньшей мере, частично, путем дробления отработанного материала-носителя катализатора.

В предпочтительном варианте осуществления отработанный носитель катализатора может быть диоксидом кремния, диоксидом титана или оксидом алюминия, предпочтительно диоксидом титана или оксидом алюминия, а металлсодержащий компонент может быть железо- или кобальтсодержащим компонентом, предпочтительно кобальтсодержащим компонентом; в то же время может присутствовать еще второй металлсодержащий компонент, выбираемый из рения, платины, циркония, ванадия или марганца, предпочтительно марганца.

В следующем предпочтительном варианте осуществления отработанный материал-носитель катализатора получают путем выщелачивания, по меньшей мере, 50% мас. металлсодержащих компонентов из отработанного катализатора; предпочтительно - 80% мас. металлсодержащих компонентов; более предпочтительно - 90% мас., причем металлсодержащими компонентами предпочтительно являются металлы VIII группы, более предпочтительно - железо-, кобальт- или никельсодержащие компоненты, наиболее предпочтительно - кобальтсодержащие компоненты.

Изобретение обеспечивает также материал-носитель катализатора, изготовленный способом согласно первому аспекту изобретения.

Изобретение обеспечивает также катализатор, содержащий материал-носитель катализатора, изготовленный способом согласно первому аспекту изобретения, и каталитически активный материал.

Для изготовления нового материала-носителя катализатора вовсе не обязательно брать для повторного использования материал от отработанного катализатора, а можно использовать другие отработанные материалы, например, материалы, используемые в нанотехнологиях, солнечных батареях, медицине и др.

Поэтому изобретение обеспечивает также способ приготовления катализатора, включающий:

- получение отработанного кристаллического материала;

- добавление активного компонента к указанному кристаллическому материалу с образованием катализатора;

преимущественно включающий специфические и предпочтительные варианты, описанные выше.

Обычно используемый кристаллический материал дробится перед добавлением к нему активного компонента.

Обычно с отработанным кристаллическим материалом могут осуществляться также другие стадии, аналогичные стадиям, выполняемым с отработанным материалом-носителем катализатора.

Настоящее изобретение пригодно, в частности, для применения для рециркуляции диоксида титана, независимо от его использования, либо в качестве носителя катализатора или в другом качестве, более предпочтительно для рециркуляции диоксида титана, использовавшегося в реакторах Фишера-Тропша, преимущественно в соответствии со специфическими и предпочтительными вариантами осуществления, описанными выше.

Продукты синтеза по Фищеру-Тропшу могут варьировать от метана до тяжелых парафиновых восков. Предпочтительно образование метана минимизируется, а значительная часть образующихся углеводородов содержит углеродную цепочку, по меньшей мере, из 5 атомов углерода. Предпочтительно количество С5+ углеводородов составляет, по меньшей мере, 60% мас. общего продукта; более предпочтительно, по меньшей мере, 70% мас.; еще более предпочтительно, по меньшей мере, 80% мас.; наиболее предпочтительно, по меньшей мере, 85% мас. Продукты реакции, которые представляют собой жидкую фазу в условиях реакции, можно отделить и удалить с помощью соответствующих средств, таких как один или более фильтров. Для этого можно использовать внутренние или наружные фильтры либо их комбинацию. Продукты в виде газовой фазы, такие как легкие углеводороды и вода, можно удалять с помощью соответствующих средств, известных квалифицированному в данной области техники специалисту.

Катализаторы процесса Фишера-Тропша известны из уровня техники и обычно включают компонент, содержащий металл VIII группы, предпочтительно кобальт, железо и/или рутений, более предпочтительно - кобальт. Обычно катализаторы содержат носитель катализатора.

Носитель катализатора предпочтительно является пористым, таким как пористый неорганический огнеупорный оксид, более предпочтительно, таким как оксид алюминия, диоксид кремния, диоксид титана, диоксид циркония или их смеси. Оптимальное количество каталитически активного металла, присутствующего на носителе, зависит, помимо прочего, от специфической активности каталитически активного металла. Обычно количество кобальта, присутствующего в катализаторе, может варьировать от 1 до 100 мас. частей на 100 мас. частей материала-носителя; предпочтительно - от 10 до 50 мас. частей на 100 мас. частей материала-носителя.

Каталитически активный металл может присутствовать в катализаторе вместе с одним либо более металлов-промоторов, или со-катализаторов. Промоторы могут присутствовать в форме металлов или оксидов металлов, в зависимости от конкретного вида промотора. Пригодные для данной цели промоторы включают оксиды металлов групп IIА, IIIB, IVB, VB, VIB и/или VIIB Периодической таблицы; оксиды лантанидов и/или актинидов. Предпочтительно катализатор содержит, по меньшей мере, один из элементов группы IVB, VB и/или VIIB Периодической таблицы, в частности, титан, цирконий, марганец и/или ванадий. В качестве альтернативы или в дополнение к промотору в форме оксида металла катализатор может содержать металл-промотор, выбираемый из групп VIIB и/или VIII Периодической таблицы. Предпочтительные металлы-промоторы включают рений, платину и палладий.

Наиболее пригодный катализатор содержит кобальт в качестве каталитически активного металла и цирконий в качестве промотора. Другой наиболее пригодный катализатор содержит кобальт в качестве каталитически активного металла и марганец и/или ванадий в качестве промотора. Предпочтительно катализатор является экструдированным катализатором, пригодным для применения в многотрубчатых реакторах с неподвижным слоем катализатора.

Промотор, если таковой присутствует в катализаторе, обычно содержится в количестве от 0,1 до 60 мас. частей на 100 мас. частей материала-носителя. Однако желательно, чтобы оптимальное количество промотора могло изменяться в случае каждого из соответствующих элементов, действующих как промотор. Если катализатор содержит кобальт в качестве каталитически активного металла и марганец и/или ванадий в качестве промотора, то атомное отношение кобальт к (марганец+ванадий) предпочтительно будет составлять, по меньшей мере, 12:1.

Синтез по Фишеру-Тропшу предпочтительно проводится при температуре от 125 до 350°С, более предпочтительно - от 175 до 275°С, наиболее предпочтительно от 200 до 260°С. Давление предпочтительно колеблется от 5 до 150 абс. бар., более предпочтительно от 5 до 80 абс. бар.

Водород и монооксид углерода (синтез-газ) обычно поступает в трехфазный суспензионный реактор молярном соотношении от 0,4 до 2,5. Предпочтительно молярное отношение водорода к монооксиду углерода составляет от 1,0 до 2,5.

Среднечасовая объемная скорость подачи газообразной фазы может варьировать в широких пределах: обычно от 1500 до 10000 нл/л/ч, предпочтительно от 2500 до 7500 нл/л/ч.

Само собой разумеется, что квалифицированный в данной области техники специалист может самостоятельно подобрать наиболее приемлемые условия в зависимости от специфики конфигурации и режима работы реактора. Понятно, что предпочтительные условия могут зависеть от предпочтительного режима работы.

Возможны также улучшения и модификации без отклонения от объема настоящего изобретения.

Изобретение включает также способ получения углеводородов из синтез-газа с использованием рециркулируемого материала-носителя, как описывалось ранее, в качестве материала-носителя для изготовления катализаторов процесса Фишера-Тропша, как описано выше. Изобретение касается также углеводородов, полученных в указанном процессе, необязательно после гидроконверсии. Эти продукты включают фракции нефти - лигроин, керосин, газойль и базовые масла.

Пример 1

Отработанный катализатор Фишера-Тропша (экструдаты кобальта-марганца-диоксида титана (Р25)) обрабатывали (после дробления) азотной кислотой с целью выщелачивания содержащегося в нем кобальта. Полученный материал-носитель содержал около 0,1% мас. кобальта и 0,1% мас. марганца (в пересчете на общую массу носителя). После последующего дробления части материала-носителя средний размер кристаллов составил примерно 45 нм. Этот материал-носитель использовали для изготовления нового катализатора, имеющего такой же состав, что и первоначальный (новый) катализатор. После активирования катализатор показал примерно такую же активность в процессе Фишера-Тропша, что и первоначальный (новый) катализатор. Таким образом, регенерированный носитель на основе диоксида титана можно использовать взамен нового (т.е. не использовавшегося ранее) носителя на основе диоксида титана.

Пример 2

Получают отработанный катализатор Фишера-Тропша (кобальт-марганец на диоксиде титана в виде экструдата Р25). Количество кобальта в отработанном катализаторе (до выщелачивания) составляет около 20 мас.% в расчете на общий вес катализатора. Отношение анатаз:рутил в диоксиде титана в отработанном материале составляет 75:25 (первое отношение).

Отработанный катализатор Фишера-Тропша дробили до среднего размера частиц около 1000 нм и выщелачивали азотной кислотой для удаления кобальта из катализатора.

Получали материал-носитель, содержащий около 0,1 мас.% кобальта и 0,1 мас.% марганца в расчете на общий вес носителя. Таким образом, более 50 мас.% кобальта было выщелочено.

После дальнейшего дробления материала-носителя средний размер частиц составил 45 нм (первый средний размер). Этот материал был использован для получения нового катализатора, имеющего тот же состав, что и исходный, свежий катализатор.

Выщелоченный и измельченный материал отработанного катализатора комбинировали со свежим диоксидом титана (Р25) в эквивалентных количествах. Средний размер частиц диоксида титана составлял около 30 нм (второй средний размер). Отношение анатаз:рутил составило 84:16 (второе отношение).

В результате комбинирования получили комбинированный материал, имеющий средний размер частиц около 40 нм (третий средний размер). Отношение анатаз:рутил в комбинированном материале составило 80:20 (третье отношение).

К катализатору добавили кобальт, чтобы новый катализатор содержал около 20 мас.% кобальта в расчете на общий вес катализатора.

Материал экструдировали и кальцинировали, т.е. прокаливали при 550°С.

После активации катализатор показал такую же активность, что и свежий катализатор Фишера-Тропша.

Таким образом, можно повторно использовать носитель из диоксида титана вместо нового, т.е. не использовавшегося ранее, диоксида титана.

Класс B01J23/94 катализаторов, содержащих металлы, оксиды или гидроксиды металлов группы железа или меди

регенерированный катализатор гидроочистки углеводородного сырья, способ регенерации дезактивированного катализатора и процесс гидроочистки углеводородного сырья -  патент 2484896 (20.06.2013)
способ получения катализатора для реформинга смолосодержащего газа, способ реформинга смолы и способ регенерации катализатора для реформинга смолосодержащего газа -  патент 2449833 (10.05.2012)
катализатор для производства углеводорода из синтез-газа, способ получения катализатора, способ регенерации катализатора и способ получения углеводорода из синтез-газа -  патент 2436627 (20.12.2011)
способ введения и регенерации кобальта в процессе гидроформилирования пропилена -  патент 2424224 (20.07.2011)
способ регенерации металлоксидных промышленных катализаторов органического синтеза -  патент 2414301 (20.03.2011)
способ переработки нефтяных остатков в дистиллятные фракции -  патент 2375412 (10.12.2009)
способ регенерации кобальта из кобальтового шлама -  патент 2363539 (10.08.2009)
способ восстановления активности катализаторов гидрогенизационных процессов -  патент 2358805 (20.06.2009)
способ активации катализатора гидроочистки -  патент 2351634 (10.04.2009)
способ регенерации отработанного катализатора для гидроочистки нефтяного сырья -  патент 2299095 (20.05.2007)

Класс B01J21/06 кремний, титан, цирконий или гафний; их оксиды или гидроксиды

способ получения этилена -  патент 2528830 (20.09.2014)
способ получения композиционных материалов на основе диоксида кремния -  патент 2528667 (20.09.2014)
способ получения высокооктанового автомобильного бензина -  патент 2524213 (27.07.2014)
способ приготовления титаноксидного фотокатализатора, активного в видимой области спектра -  патент 2520100 (20.06.2014)
композиция на основе оксидов циркония, церия и другого редкоземельного элемента при сниженной максимальной температуре восстанавливаемости, способ получения и применение в области катализа -  патент 2518969 (10.06.2014)
катализатор и способ синтеза олефинов из диметилового эфира в его присутствии -  патент 2518091 (10.06.2014)
фотокаталитические композиционные материалы, содержащие титан и известняк без диоксида титана -  патент 2516536 (20.05.2014)
катализатор очистки выхлопных газов и способ его изготовления -  патент 2515542 (10.05.2014)
способ приготовления катализатора для полного окисления углеводородов, катализатор, приготовленный по этому способу, и способ очистки воздуха от углеводородов с использованием полученного катализатора -  патент 2515510 (10.05.2014)
катализатор для получения бутадиена превращением этанола -  патент 2514425 (27.04.2014)

Класс B01J23/74 металлы группы железа

способ изготовления металл-углерод содержащих тел -  патент 2520874 (27.06.2014)
сформированные катализаторные блоки -  патент 2514191 (27.04.2014)
катализатор переработки тяжелых нефтяных фракций -  патент 2506997 (20.02.2014)
способ приготовления катализатора для получения синтез-газа -  патент 2493912 (27.09.2013)
селективный катализатор для конверсии ароматических углеводородов -  патент 2491121 (27.08.2013)
катализатор гидродеоксигенации кислородорганических продуктов переработки растительной биомассы и процесс гидродеоксигенации с применением этого катализатора -  патент 2472584 (20.01.2013)
способ получения катализатора на углеродном носителе -  патент 2467798 (27.11.2012)
способ получения титанатного фотокатализатора, активного в видимой области спектра -  патент 2466791 (20.11.2012)
каталитическая композиция, пригодная для каталитического восстановления сернистого соединения, содержащегося в газовом потоке, и способ получения и применение такой композиции -  патент 2461424 (20.09.2012)
способ аммоксимирования -  патент 2453535 (20.06.2012)

Класс B01J23/84 с мышьяком, сурьмой, висмутом, ванадием, ниобием, танталом, полонием, хромом, молибденом, вольфрамом, марганцем, технецием или рением

способ получения катализатора синтеза углеводородов и его применение в процессе синтеза углеводородов -  патент 2502559 (27.12.2013)
цеолитсодержащий катализатор, способ его получения и способ переработки прямогонного бензина в высокооктановый компонент бензина с пониженным содержанием бензола -  патент 2498853 (20.11.2013)
катализатор для получения метилмеркаптана -  патент 2497588 (10.11.2013)
цеолитсодержащий катализатор, способ его получения и способ превращения прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола -  патент 2493910 (27.09.2013)
катализатор гидродеоксигенации кислородорганических продуктов переработки растительной биомассы и процесс гидродеоксигенации с применением этого катализатора -  патент 2472584 (20.01.2013)
шариковый катализатор для гидроочистки нефтяных фракций и способ его приготовления -  патент 2472583 (20.01.2013)
способ аммоксимирования -  патент 2453535 (20.06.2012)
способ изготовления пористого гранулированного катализатора -  патент 2453367 (20.06.2012)
катализатор парового риформинга углеводородов и способ его получения -  патент 2446879 (10.04.2012)
катализатор и процесс гидродеоксигенации кислородорганических продуктов переработки растительной биомассы -  патент 2440847 (27.01.2012)

Класс B01J38/68 включая по существу растворение или химическое осаждение каталитического компонента в конечной стадии перестройки катализатора

Класс C07C1/04 реакцией оксида углерода с водородом 

способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
способ и устройство для изготовления частиц защищенного катализатора с помощью расплавленного органического вещества -  патент 2528424 (20.09.2014)
способ оптимизации функционирования установки для синтеза углеводородов из синтез-газа путем контроля парциального давления со -  патент 2525291 (10.08.2014)
катализатор для прямого получения синтетической нефти, обогащенной изопарафинами, и способ его получения -  патент 2524217 (27.07.2014)
регенерация катализатора фишера-тропша путем его окисления и обработки смесью карбоната аммония, гидроксида аммония и воды -  патент 2522324 (10.07.2014)
способ производства метанола, диметилового эфира и низкоуглеродистых олефинов из синтез-газа -  патент 2520218 (20.06.2014)
катализаторы -  патент 2517700 (27.05.2014)
способ производства метанола, диметилового эфира и низкоуглеродистых олефинов из синтез-газа -  патент 2516702 (20.05.2014)
способ получения углеводородных бензиновых фракций из синтез-газа, разбавленного азотом и диоксидом углерода (варианты) -  патент 2510388 (27.03.2014)
пористый керамический каталитический модуль и способ переработки отходящих продуктов процесса фишера-тропша с его использованием -  патент 2506119 (10.02.2014)
Наверх