способ получения 4-аминодифениламина и промежуточных продуктов его синтеза

Классы МПК:C07C209/36 связанных с атомами углерода шестичленных ароматических колец
C07C209/38 восстановлением нитрозогрупп
C07C211/55 дифениламины
C07C211/56 углеродный скелет замещен атомами галогена или нитро- или нитрозогруппами
Автор(ы):, , ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования Томский политехнический университет (RU)
Приоритеты:
подача заявки:
2008-04-07
публикация патента:

Изобретение относится к получению 4-аминодифениламина и промежуточных продуктов его синтеза, выбранных из 4-нитродифениламина и 4-нитрозодифениламина взаимодействием анилина и нитробензола в присутствии катализатора, содержащего четвертичную аммонийную группу с образованием 4-нитродифениламина и 4-нитрозодифениламина в качестве промежуточных продуктов, с последующим гидрированием указанных промежуточных продуктов реакции после их выделения или непосредственно в реакционной массе в присутствии катализатора гидрирования и растворителя, в качестве которого используют низший спирт или воду, отделением катализатора гидрирования от реакционной смеси с получением водной и органической фазы, которые разделяют с выделением из органической фазы 4-аминодифениламина, отличающийся тем, что в качестве катализатора на стадии взаимодействия анилина и нитробензола используют полимерный высокоосновной анионит в OH-форме, содержащий четвертичную аммонийную группу N(CH 3)3способ получения 4-аминодифениламина и промежуточных продуктов   его синтеза, патент № 2369595 +, и взаимодействие проводят в присутствии основания. Предпочтительно молярное соотношение анилина и нитробензола составляет от 3:1 до 7:1 и соотношение основания и нитробензола составляет от 0,9:1 до 1,5:1. 2 з. п. ф-лы, 3 табл.

Формула изобретения

1. Способ получения 4-аминодифениламина и промежуточных продуктов его синтеза, выбранных из 4-нитродифениламина и 4-нитрозодифениламина взаимодействием анилина и нитробензола в присутствии катализатора, содержащего четвертичную аммонийную группу с образованием 4-нитродифениламина и 4-нитрозодифениламина в качестве промежуточных продуктов, с последующим гидрированием указанных промежуточных продуктов реакции после их выделения или непосредственно в реакционной массе в присутствии катализатора гидрирования и растворителя, в качестве которого используют низший спирт или воду, отделением катализатора гидрирования от реакционной смеси с получением водной и органической фазы, которые разделяют с выделением из органической фазы 4-аминодифениламина, отличающийся тем, что в качестве катализатора на стадии взаимодействия анилина и нитробензола используют полимерный высокоосновной анионит в OH-форме, содержащий четвертичную аммонийную группу N(CH 3)3способ получения 4-аминодифениламина и промежуточных продуктов   его синтеза, патент № 2369595 +, и взаимодействие проводят в присутствии основания.

2. Способ по п.1, отличающийся тем, что молярное соотношение анилина и нитробензола составляет от 3:1 до 7:1.

3. Способ по п.1, отличающийся тем, что молярное соотношение основания и нитробензола составляет от 0,9:1 до 1,5:1.

Описание изобретения к патенту

Изобретение относится к малоотходному способу получения 4-аминодифениламина (4-АДФА). Изобретение также относится к способам получения 4-нитродифениламина и/или 4-нитрозодифениламина, которые являются промежуточными соединениями при синтезе 4-АДФА и алкилированных n-фенилендиаминов.

4-Аминодифениламин широко применяют в качестве промежуточного продукта при получении алкилированных производных 4-АДФА, используемых в качестве антиозонантов, антиоксидантов и стабилизаторов мономеров и различных полимерных материалов.

Известен способ получения 4-АДФА (патент США № 5608111), в котором анилин и нитробензол вступают в реакцию в присутствии основания. Затем к продукту добавляют воду, и полученную реакционную смесь каталитически гидрируют. Катализатор, которым обычно является благородный металл на носителе, удаляют из смеси реакции гидрирования. Для выделения 4-АДФА отделяют органическую фазу, а водную фазу, которая содержит основание, возвращают в другой цикл исходной реакционной смеси. В рабочих примерах анилин и нитробензол взаимодействуют в присутствии гидроксида тетраметиламмония (ГТМА), применяемого в качестве основания, и во время реакции конденсации в виде азеотропной смеси удаляют воду и анилин.

Патент США № 5739403 описывает реакцию конденсации и последующее каталитическое гидрирование, где количество добавленной воды составляет от 25 до 80 вес.% относительно веса смеси реакции конденсации. После гидрирования добавляют толуол, отфильтровывают катализатор и разделяют органическую и водную фазы. В примере 1 указывается, что: «Анализ водной фазы показывает, что может быть выделено 99,7% от поступившего ГТМА. Полученная водная фаза может быть возвращена в реакцию без потерь реакционной способности».

Недостаток этого способа состоит в том, что реакционная способность извлеченного в описанном способе основания в действительности является неизвестной. ГТМА является неустойчивым соединением и разлагается в концентрированном виде и повышении температуры, поэтому его вынуждены хранить и использовать в виде разбавленных водных растворов. Но даже в водных растворах при температуре выше 80°C он разлагается с образованием (CH3) 3N и CH3OH, что приводит к его потере и удорожанию целевого продукта из-за высокой стоимости ГТМА (см. Химич. энцик.. T.1, изд. Совет. энц., М., 1988 г., с.152).

Известен способ (патент России № 2225387), в котором было показано (пример 7), что степень разложения ГТМА при 80°C зависит от молярного соотношения воды к ГТМА и составляет за 2 часа 0,2 и 2% при молярном отношении воды к ГТМА, равном 5 и 2,7 соответственно.

Известны способы, в которых вместо дорогого и неустойчивого ГТМА было предложено использовать хлорид тетраметиламмония (патенты России № 2265590, № 2247712), различные соли четвертичных аммонийных оснований (патенты США № 6395933, № 6583320) в сочетании с сильным основанием, комплексные катализаторы (патенты США № 7176333, № 7235694), состоящие из гидроксида тетраалкиламмония, гидроксида щелочного металла и соли тетраалкиламмония.

Ближайшим аналогом (прототипом) настоящего изобретения является патент США 7235694, June 26, 2007, C07C 209/00. По прототипу 4-АДФА получают из анилина и нитробензола в 5 технологических стадий. На первой стадии проводят конденсацию анилина с нитробензолом в присутствии комплексного основного катализатора, на второй - полученную реакционную смесь разбавляют растворителем, в качестве которого используют низшие спирты или воду, и гидрируют на никель-алюминиевом катализаторе при 50-100°C и 0,2-3 МПа. Третьей стадией процесса является отделение, восстановление комплексного основного катализатора и порошкообразного катализатора гидрирования. Эти катализаторы могут быть повторно использованы в процессе. На четвертой стадии проводят отделение и очистку не прореагировавшего анилина, для повторного использования; на пятой - очистку сырого 4-АДФА, с получением товарного продукта. Недостатком этого способа является использование термически неустойчивых четвертичных аммонийных соединений - ГТМА и его солей в качестве компонентов комплексного основного катализатора стадии конденсации. Это накладывает очень жесткие требования к поддержанию температурного режима на первых трех стадиях технологического процесса. Перегрев реакционной массы выше 80°C ведет к существенному ускорению процессов разложения катализатора, образованию побочных продуктов и снижению селективности процессов конденсации и гидрирования (см. патент России 2225387). Кроме того, использование органических полиэфиров на стадии выделения комплексного основного катализатора ведет к накоплению их в системе рециркуляции, что в свою очередь приводит к дополнительным затратам на их отделение и обезвреживание, загрязнению товарного продукта.

Задачей настоящего изобретения является разработка способа получения 4-АДФА с использованием гетерогенного катализатора конденсации, что позволит существенно упростить его отделение от реакционной массы, снимет жесткие технологические ограничения на других стадиях процесса, улучшит технико-экономические показатели производства. Она решается проведением процесса конденсации в присутствии катализатора, в качестве которого используют высокоосновный анионит, содержащий четвертичную аммонийную группу ~-N(CH3)3способ получения 4-аминодифениламина и промежуточных продуктов   его синтеза, патент № 2369595 +.

Сущность изобретения и его отличительные признаки

В соответствии с настоящим изобретением способ получения 4-АДФА включает в себя следующие стадии процесса:

1. Взаимодействие нитробензола с анилином в щелочной среде в присутствии полимерного катализатора конденсации, в качестве которого используют высокоосновный анионит, содержащий четвертичную аммонийную группу ~-N(CH3) 3способ получения 4-аминодифениламина и промежуточных продуктов   его синтеза, патент № 2369595 +.

2. Каталитическое гидрирование продуктов реакции стадии (1) в присутствии растворителя, в качестве которого используют низшие спирты или воду.

3. Отделение катализатора гидрирования от реакционной смеси и регенерация его свойств.

4. Разделение реакционной смеси на водную и органическую фазы, извлечение из органической фазы избытка анилина, очистка и концентрирование водной фазы с целью регенерации щелочного агента.

5. Выделение из оставшейся органической фазы товарного 4-АДФА и утилизация побочных продуктов.

Существенным отличием заявляемого способа от прототипа является использование высокоосновного анионита, содержащего четвертичную аммонийную группу ~-N(CH3)3способ получения 4-аминодифениламина и промежуточных продуктов   его синтеза, патент № 2369595 + в качестве катализатора конденсации.

Использование полимерного катализатора исключает стадию его отделения от реакционной массы, снимает жесткие температурные и концентрационные ограничения на последующих стадиях проведения процесса получения 4-АДФА.

Способ позволяет снизить затраты на сырье за счет использования анионита, уменьшить энергетические затраты на разделение продуктов реакции. В качестве катализатора конденсации можно использовать известные высокопористые сильноосновные аниониты, такие как АВ-17П (Энциклопедия полимеров. T.1, изд. Совет, энц., М., 1974 г., с.168; Славинская Г.В., Селеменев В.Ф., Кузнецова Н.С., Понамарев А.Н., Мерзликина А.А. Равновесие сорбции фульвокислот природных вод анионитами. // Вестник ВГУ. Серия: Химия. Биология. Фармация. 2003. № 2. С.66-70), Amberlyst A26, Amberlyst A27 (каталог продукции дочерней компании фирмы Dow Chemical Company - http://www.amberlyst.com/sba.htm), DOWEX MARATHON MSA, DOWEX UPCORE Mono MA-600, DOWEX MSA-1C, DOWEX MONOSPHERE MP-725A (каталог продукции фирмы Dow Chemical Company - http://www.dow.com/liquidseps/prod/sbati.htm), Tulsion A-74 MP (каталог продукции фирмы Thermax Limited -www.swtsamara.ru/files/catalog.doc), Purolite A500 (каталог продукции фирмы Purolite - http://www.purolite.com/ProductID/203/FolderID/60/Page Vars/Library/Products/ProductDetails.htm). Наши исследования показали, что использование гелевых высокоосновных анионитов, таких как АВ-17-8 приводит к снижению их каталитической активности в реакции конденсации, вследствие сильной адсорбции продуктов реакции и низкой скорости массообмена.

Реакцию конденсации анилина с нитробензолом можно осуществлять периодическим или непрерывным способом. Реакционный узел состоит как минимум из двух основных аппаратов: реактора и отгонной емкости. В качестве реактора можно использовать реактор с мешалкой и диспергированным в реакционной массе катализатором или полочный аппарат с неподвижным слоем катализатора. В отгонной емкости осуществляется отгонка под вакуумом азеотропной смеси анилин-вода. Использование вспомогательной отгонной емкости позволяет поддерживать оптимальный температурный режим в реакторе конденсации и снимает жесткие температурные и концентрационные ограничения при удалении воды из реакционной массы.

При выборе условий проведения процесса конденсации мы учитывали результаты и рекомендации вышеупомянутых патентов.

Молярное отношение анилина к нитробензолу составляет от 1:1 до 10:1. Предпочтительно это отношение находится в диапазоне от 3:1 до 7:1. В качестве основания обычно используют водные растворы гидроксидов натрия или калия. Для практических целей в начале процесса рекомендуется использовать 30-40 мас.% водный раствор гидроксида натрия.

Для более полной конверсии нитробензола и предотвращения протекания побочных реакций, во время реакции анилина с нитробензолом отгоняется вода и тщательно регулируется молярное отношение воды к основанию. Так как анилин присутствует в реакторе в молярном избытке относительно нитробензола, вода может быть отогнана в форме азеотропной смеси воды и анилина. Молярное отношение воды к основанию в начале реакции конденсации составляет не менее 4,5:1, и в конце реакции конденсации, когда степень конверсии нитробензола составляет 98% и выше, это отношение составляет не менее 1,0:1. Контролировать процесс удаления воды можно путем измерения массы или объема воды в дистилляте. Следует иметь в виду, что при расчете компонентов, количество основания представляет собой общее количество присутствующего в реакторе основания, т.е. свободного основания и/или основания, включенного в соли 4-нитрозо- и/или 4-нитродифениламина. Количество воды включает воду, которая поступает вместе с основанием, и воду, которая образуется в процессе конденсации.

Молярное отношение основания к нитробензолу может быть в диапазоне от 0,7:1 до 4:1, предпочтительно в диапазоне от 0,9:1 до 1,5:1. Температура в реакторе конденсации может варьироваться от 20 до 60°C, предпочтительно от 50 до 60°C; в отгонной емкости от 50 до около 150°C, предпочтительно от около 70 до 100°C. Давление на стадии конденсации поддерживается в диапазоне от 20 до 200 мбар, предпочтительно в диапазоне от 50 до 150 мбар.

Время реакции конденсации включает время добавления нитробензола плюс время выдержки и оно составляет 3,5-6 часов. Реакционная смесь перемешивается в течение всего времени протекания реакции конденсации. Перемешивание и циркуляция реакционной массы в реакционном узле реактор - отгонная емкость осуществляется при помощи циркуляционного насоса.

Реакционную смесь разбавляют водой и гидрируют на никель-алюминиевом катализаторе при 50-100°C и 0,2-3 МПа.

Отделение катализатора гидрирования от реакционной смеси и регенерация его свойств проводится известными способами.

Ввиду отсутствия в реакционной массе четвертичных аммониевых соединений ее разделение на водную и органическую фазы протекает значительно эффективнее, чем в прототипе. Это в свою очередь позволяет отказаться от использования органических полиэфиров на стадии разделения, что улучшает качество продукта и снижает его себестоимость.

Отсутствие в реакционной массе четвертичных аммониевых соединений значительно облегчает проведение процесса концентрирования водной фазы с целью регенерации щелочного агента.

Выделение из оставшейся органической фазы товарного 4-АДФА и утилизацию побочных продуктов проводят по аналогии со способом, описанным в прототипе.

Ниже приведены результаты экспериментов, поясняющих суть настоящего изобретения.

Пример 1

Реакцию конденсации анилина с нитробензолом, с использованием в качестве катализатора анионита АВ-17П в OH-форме, проводили на периодической установке при температуре в зоне катализатора 58±1°C в течение 5 часов. Установка включала в себя циркуляционный насос и трехгорлую колбу, снабженную: насадкой-реактором и капельной воронкой; насадкой-сепаратором и обратным холодильником; сифоном для рециркуляции реакционной массы. Насадка-реактор имела рубашку для термостатирования слоя катализатора. Объем анионита в реакторе 25 см3. В колбу загружали 11,5 г 35 мас.% раствора NaOH (0,0936 моля NaOH), 37,8 г (0,4065 моля) анилина и нагревали до температуры 60°C. Вакуумировали установку до остаточного давления 120-170 мбар, включали циркуляционный насос, устанавливали скорость циркуляции реакционной массы из отгонной колбы в реактор 100 см3/ч и начинали дозировку нитробензола в количестве 10 г (0,0813 моля). Продолжительность дозирования нитробензола 90 минут. В отгонной колбе поддерживали температуру, при которой происходит непрерывная отгонка азеотропной смеси анилин-вода. Анилин постоянно возвращался в отгонную колбу. Общее количество воды, отогнанное в ходе процесса конденсации (во всех опытах), 6,7 г. Контроль за процессом конденсации осуществляли при помощи тонкослойной хроматографии и электронной спектроскопии. После проведения каждого синтеза определяли обменную емкость анионита в соответствии с ГОСТ 17552-72 (Мембраны ионообменные. Методы определения полной и равновесной обменной емкости. ГОСТ 17552-72).

Результаты ряда последовательных синтезов представлены в таблице 1. Полученные результаты свидетельствуют, что при проведении ряда последовательных синтезов происходит некоторое снижение обменной емкости анионита (в пределах 5-6% за 10 синтезов) обусловленное, скорее всего, адсорбцией побочных продуктов на активных центрах. При этом изменения степени конверсии нитробензола и селективности процесса практически не происходит.

Пример 2

Реакцию конденсации анилина с нитробензолом проводили с использованием в качестве катализатора других известных высокопористых сильноосновных анионитов. Условия проведения опытов и загрузки такие же, как в примере 1. Результаты представлены в таблице 2. Полученные результаты свидетельствуют, что известные высокоосновные аниониты, содержащие четвертичную аммонийную группу ~-N(CH3)3способ получения 4-аминодифениламина и промежуточных продуктов   его синтеза, патент № 2369595 +, могут служить катализаторами процесса конденсации анилина с нитробензолом с образованием 4-нитродифениламина и 4-нитрозодифениламина.

Пример 3

Реакцию конденсации анилина с нитробензолом проводили в условиях проведения опытов примера 1. Объем анионита в реакторе 25 см 3. Количество нитробензола 10 г (0,0813 моля), мольное отношение анилин : нитробензол менялось в пределах от 3:1 до 7:1 и мольное отношение NaOH : нитробензол менялось в пределах от 0,9:1 до 1,5:1. Результаты представлены в таблице 3. Полученные результаты свидетельствуют, что при указанных мольных отношениях анилин: щелочной агент: нитробензол можно проводить процесс конденсации анилина с нитробензолом с образованием 4-нитродифениламина и 4-нитрозодифениламина.

Пример 4

Реакцию конденсации анилина с нитробензолом, с использованием в качестве катализатора анионита АВ-17П в OH-форме, проводили на периодической установке при температуре в зоне катализатора 58±1°C в течение 6 часов. Объем анионита в реакторе 25 см3. В колбу загружали 9,77 г 40 мас.% раствора NaOH (0,0976 моля NaOH), 9,07 г (0,0976 моля) анилина и нагревали до температуры 60°C. Вакуумировали установку до остаточного давления 120-170 мбар, включали циркуляционный насос, устанавливали скорость циркуляции реакционной массы из отгонной колбы в реактор 50 см3/ч и начинали дозировку нитробензола в количестве 10 г (0,0813 моля). Продолжительность дозирования нитробензола 90 минут. В отгонной колбе поддерживали температуру, при которой происходит непрерывная отгонка азеотропной смеси анилин-вода. Анилин постоянно возвращался в отгонную колбу. Общее количество воды, отогнанное в ходе процесса конденсации, 5,1 г. Контроль за процессом конденсации осуществляли при помощи тонкослойной хроматографии и электронной спектроскопии. Анализ реакционной массы показал: конверсия нитробензола 82%, селективность процесса по сумме двух продуктов 4-нитродифениламина и 4-нитрозодифениламина 92%.

По завершении процесса реакционную массу охлаждали, катализатор промывали 6 порциями раствора NaOH с концентрацией 1 моль/л по 25 см3. Промывочные растворы присоединяли к реакционной массе, полученный раствор частично нейтрализовали концентрированной соляной кислотой до рН 10,5-11 (по рН-метру), охлаждали до 2-5°C и отфильтровывали выпавший 4-нитродифениламин. Фильтрат обрабатывают концентрированной соляной кислотой до рН 6-7, что вызывает осаждение 4-нитрозодифениламина. Осадок отфильтровывают и сушат при 100°С. Продукты идентифицированы по ИК- и ПМР-спектрам. Температура плавления полученного 4-нитродифениламина - 133-134°C. Температура плавления полученного 4-нитрозодифениламина 141-142°C. Окончательный выход выделенных веществ по отношению к прореагировавшему нитробензолу составляет 63% для 4-нитродифениламина и 29% для 4-нитрозодифениламина. Данный пример показывает условия выделения и выходы промежуточных продуктов 4-нитродифениламина и 4-нитрозодифениламина.

Пример 5

К реакционной массе, полученной на стадии конденсации в условиях примера 1 при использовании приработанного катализатора (катализатор использовался в 6 синтезах без регенерации щелочью), добавляли 10 г воды и 3,7 г катализатора гидрирования - «никель скелетный». Полученную смесь загружали в реактор и проводили гидрирование водородом при температуре 75-80°C и давлении 1,5 МПа до прекращения поглощения водорода, которое продолжается 1,5-2 часа. По завершении реакции смесь охлаждали до 20-30°C, выгружали из реактора, отделяли катализатор от жидкой фазы, катализатор промывали тремя порциями воды по 10 см3. Промывные воды присоединяли к жидкой фазе стадии гидрирования (гидрогенизат).

Катализатор гидрирования используют повторно.

К гидрогенизату добавляли 32,5 г воды, 24,04 г толуола, смесь перемешивали, отстаивали и отделяли водную и органическую фазы. Водную фазу - 4,5-5% раствор NaOH можно использовать повторно на стадии конденсации или для регенерации катализатора конденсации (высокоосновного анионита). Результаты наших экспериментов показывают, что более 99% NaOH может быть возвращено в процесс для повторного использования. Концентрирование водного раствора NaOH до необходимой концентрации проводили упариванием под вакуумом.

Анализ органической фазы показал, что выход 4-АДФА на загруженный нитробензол составляет 96,9%. Органическую фазу подвергали фракционной разгонке. При атмосферном давлении отгоняли толуол и анилин, которые можно использовать повторно. Остаток разгоняли на ректификационной колонке при 6-25 мбар. Получают 4-АДФА с температурой плавления 66-67°C и массовой долей основного вещества 99,8%. Данный пример показывает конкретные условия проведения отдельных стадий процесса получения целевого продукта 4-АДФА.

Достигаемый технический результат

Приведенные примеры показывают, что использование высокоосновного анионита в качестве катализатора процесса конденсации анилина с нитробензолом в щелочной среде снимает температурные ограничения на последующих стадиях процесса получения 4-АДФА, повышает эффективность и значительно облегчает проведение процессов фазового разделения реакционной массы, регенерации щелочного раствора.

Таблица 1

Влияние числа последовательных синтезов на степень конверсии и селективность процесса конденсации анилина с нитробензолом
№ опыта Степень конверсии нитробензола Селективность процесса* Полная статическая обменная емкость, мг-экв/см3**
1 0,992 0,982 0,990
2 0,990 0,988 0,976
3 0,987 0,992 0,973
4 0,989 0,978 0,969
5 0,986 0,984 0,976
6 0,986 0,987 0,961
7 0,988 0,986 0,947
8 0,987 0,981 0,947
9 0,989 0,978 0,954
10 0,986 0,976 0,947
* - селективность процесса определялась по формуле селективность = (сумма молей 4-нитродифениламина и 4-нитрозодифениламина)/(количество молей прореагировавшего нитробензола)

** - полная статическая обменная емкость анионита АВ-17П в исходном состоянии 994 мг-экв/см 3
Таблица 2

Влияние типа полимерного катализатора на степень конверсии и селективность процесса конденсации анилина с нитробензолом
№ опыта Анионит Степень конверсии нитробензола Селективность процесса
1 Amberlyst A26 OH 0,982 0,984
2 DOWEX Marathon MSA 0,988 0,976
3 Tulsion A-74 MP 0,986 0,982
4 Purolite A500 0,990 0,972
Таблица 3

Влияние мольного отношения регентов на степень конверсии, селективность и выход процесса конденсации анилина с нитробензолом
№ опыта Мольное отношение Степень конверсии нитробензола Селективность процесса Выход продуктов*
анилин/нитробензол NaOH/нитробензол
1 5 1,2 0,984 0,9840,968
2 3 1,2 0,954 0,9440,901
3 7 1,2 0,988 0,9940,982
4 5 0,9 0,936 0,9620,900
5 5 1,5 0,976 0,9680,945
* - сумма выходов 4-нитродифениламина и 4-нитрозодифениламина

Класс C07C209/36 связанных с атомами углерода шестичленных ароматических колец

способ преобразования ароматического нитросоединения в амины -  патент 2518110 (10.06.2014)
химическая установка -  патент 2508287 (27.02.2014)
способ получения n-алкил-n'-фенил-пара-фенилендиаминов -  патент 2502725 (27.12.2013)
способ получения 2-(аминоалкил)-3-(аминофенил)бицикло[2.2.1]гептанов -  патент 2493145 (20.09.2013)
способ получения 4-аминостирола -  патент 2485094 (20.06.2013)
способ селективного получения n-метил-пара-анизидина -  патент 2472774 (20.01.2013)
способ селективного получения n-метил-пара-фенетидина -  патент 2471771 (10.01.2013)
способ получения м-толуилендиамина -  патент 2424226 (20.07.2011)
способ одновременного получения 2-нитро-5-хлоранилина и 2-нитро-4-хлоранилина -  патент 2414452 (20.03.2011)
способ получения производных 2-(аминометил)-3-фенил-бицикло[2.2.1]гептанов -  патент 2405766 (10.12.2010)

Класс C07C209/38 восстановлением нитрозогрупп

Класс C07C211/55 дифениламины

способ получения n-алкил-n'-фенил-пара-фенилендиаминов -  патент 2502725 (27.12.2013)
способ получения n-2-этилгексил-n'-фенил-п-фенилендиамина -  патент 2463289 (10.10.2012)
способ получения 2-нитродифениламина -  патент 2447058 (10.04.2012)
антиоксиданты и способы производства антиоксидантов -  патент 2445349 (20.03.2012)
алкилирование n'-фенил-n-алкилфенилендиаминов в ионной жидкости -  патент 2422435 (27.06.2011)
прямое алкилирование n-алкил-n'-фенил-п-фенилендиамина -  патент 2421444 (20.06.2011)
алкилирование производного дифениламина в ионной жидкости -  патент 2418784 (20.05.2011)
способ получения n-2-этилгексил-n'-фенил-п-фенилендиамина -  патент 2417981 (10.05.2011)
антиокислительные композиции октилированных дифениламинов и способ их получения -  патент 2382798 (27.02.2010)
способ получения n-2-этилгексил-n'-фенил-п-фенилендиамина и выделения товарной 2-этилгексановой кислоты из отходов производства n-2-этилгексил-n'фенил-п-фенилендиамина -  патент 2373190 (20.11.2009)

Класс C07C211/56 углеродный скелет замещен атомами галогена или нитро- или нитрозогруппами

Наверх