профилактически-лечебное антимутагенное средство и способ его применения

Классы МПК:A61K35/60 рыбы
A61K31/202  имеющие три или более двойных связей, например линоленовая кислота
A61P43/00 Лекарственные средства для специфических целей, не указанные в группах  1/00
Автор(ы):, , , , , , , , , , ,
Патентообладатель(и):ООО "Диана" (RU)
Приоритеты:
подача заявки:
2006-05-15
публикация патента:

Предложено применение в качестве антимутагенного средства «Эйкозавитола» - препарата, полученного особой обработкой внутреннего жира деликатесных пород рыб Обского бассейна (муксуна, нельмы, осетра). «Эйкозавитол» уникален по составу, содержит до 15% незаменимых высших жирных кислот семейства «Омега 3», витамины А, D, Е. Также предложен способ профилактически-лечебного воздействия. Показано, что препарат стимулирует синтез ДНК в 2-4 раза относительно контрольного уровня и вызывает изменение конформации ДНК, проявляющееся разделением полинуклеотидных цепей («плавлением» ДНК) и гиперхромизмом. 2 н.п. ф-лы, 5 табл.

Формула изобретения

1. Использование препарата "Эйкозавитол", содержащего жир гидробионтов, включающий полиненасыщенные жирные кислоты (ПНЖК) класса «Омега 3» в качестве профилактически-лечебного антимутагенного средства для восстановления поражений ДНК от мутагенных воздействий факторов природного и техногенного происхождения.

2. Способ профилактически-лечебного воздействия для восстановления поражений ДНК от мутагенных воздействий, отличающийся тем, что используют "Эйкозавитол" в виде капсул по 1-3 капсула 3-4 раза в день при курсе приема 30-60 дней.

Описание изобретения к патенту

Изобретение относится к медицине, а именно к генетической токсикологии, и касается средств, проявляющих антимутагенный эффект.

Профилактика мутагенных воздействий генотоксикантов окружающей среды является одной из наиболее актуальных задач в современной медицинской науке.

В связи с невозможностью ограничения воздействия факторов окружающей среды на человека возникает необходимость поиска средств, препятствующих проникновению мутагенов в клетки организма и элиминирующих уже возникшие генетические повреждения, тем самым снижая давление генетического груза в популяциях людей.

Антимутагенные свойства выявлены у многих природных и синтетических веществ: витаминов, аминокислот, флавоноидов. естественных метаболитов, лекарственных средств.

Известно применение препаратов: "Жир печени акулы" и "Супер Хрящ Акулы" для уменьшения негативного действия неблагоприятных биологических факторов ионизирующего излучения, последствий химио- и лучевой терапии (см. Зуева Е.А. Справочник по биодобавкам. Ростов н/Д: Феникс, 2003 г., с.242; 265). Хорошими результатами применения обладают препараты импортные, изготовляемые из дефицитного океанического сырья, имеющие высокую цену.

Известно также использование рыбьего жира с ламинарией в виде капсул (производства ЗАО "Био Контур" г.Мурманск) при лечении и профилактики патологических процессов, связанных с воздействием неблагоприятных экологических факторов, ионизирующего облучения. Состав включает натуральный рыбий жир - 93%, экстракт ламинарии - 7,0%, витамины А, D, Е и обладает антимутагенным действием. Дозировка взрослым по 5 капсул 3-4 раза в день (см. Зуева Е.А. Справочник по биодобавкам. Ростов н/Д: Феникс, 2003 г., с.283). К некоторым недостаткам такого состава относятся довольно большие дозы и курсы применения и использование в производстве жира океанических и морских рыб, что сужает сырьевую базу производства препарата.

Известен также "Лечебно-профилактический комплекс" с иммуностимулирующим и регулирующим метаболические процессы в организме действием, содержащий лососевый жир, включающий полиненасыщенные кислоты класса «Омега-3», масло примулы вечерней (онагра), ацетат альфа-токоферола, Coviox T70, помещенный в желатиновые капсулы по 475-525 мг. Рекомендуемый курс применения лечебно-профилактического комплекса до 3 месяцев (см. Патент РФ № 2194522, А61К 35/78, опубл. 20.12.2002. Бюл. № 35). Сложный состав комплекса сдерживает широкое производство и применение.

Задачей изобретения является расширение ассортимента и доступности препаратов, включающих жир гидробионтов, содержащий полиненасыщенные жирные кислоты класса «Омега 3» и используемых для профилактики, лечения мутагенных воздействий антропогенных факторов и для восстановления поражений ДНК, в частности, от ионизирующего излучения и повышенного радиационного фона, как природного так и техногенного характера.

Задача решается тем, что после уточнения и дополнительного изучения свойств в качестве профилактически-лечебного антимутагенного средства и для коррекции поражений ДНК предложено применение препарата "Эйкозавитол", ранее разработанного и известного как дополнительный источник полиненасыщенных жирных кислот «Омега 3», производства ОАО "Тюменский химико-фармацевтический завод" ТУ-9281-00134458166-2005 (свидетельство о государственной регистрации выдано ООО "Фарнавит»" № 77.99.23.3У.9639.8.05. от 24.08.2005 г.; санитарно-эпидемиологическое заключение № 77.99.03.003.Т.001588.08.05. от 24.08.2005 г.)

"Эйкозавитол" представляет собой особо обработанный внутренний жир деликатесных пород рыб Обского бассейна (муксуна, нельмы, осетра) уникален по составу, содержит до 15% незаменимых высших жирных кислот семейства «Омега 3», витамины А, D, Е, F. "Эйкозавитол" выделяется по запатентованной технологии, обеспечивающей природное качество липидов, и представляет экологически чистый продукт. Известно, что "Эйкозавитол" в лечебных дозах (по 1 столовой ложке 3 раза в день) снижает уровень холестерина, корректирует нарушение липидного обмена, уменьшает свертываемость крови, повышает иммунитет, проявляет гипоаллергенное действие, улучшает заживление ран (см. Аннотация. Биологически активная добавка к пицце "Эйкозавитол", ОАО "Тюменский химикофармацевтический завод", г.Тюмень). "Эйкозавитол" выпускают в жидком виде (флаконы до 1000 мл) и в виде капсул по 0,385 г. Применение препарата "Эйкозавитол" в качестве антимутагенного средства ранее неизвестно.

Настоящее изобретение направлено на обоснование способа антимутагенного воздействия на организм с использованием препарата "Эйкозавитол", который представляет собой еще недостаточно изученный комплекс, содержащий полиненасыщенные жирные кислоты (ПНЖК) класса «Омега 3», преимущественно в виде эйкозапенатаевой и докозагексаеновой кислот, являющихся предшественниками биологически активных веществ (простагландинов, тромбоксанов, простациклинов), полученный из деликатесных рыб: муксуна, осетра, нельмы, пеляди, обитающих в акватории р.Оби.

У ПНЖК в организме множество различных функций. Они используются для образования жира, который покрывает и защищает внутренние органы. Расщепляясь, жирные кислоты выделяют энергию и участвуют в синтезе эйкозаноидов: простагландинов, лейкотриенов и тромбоксанов. Эти соединения регулируют важные функции организма, такие как артериальное давление, сокращение отдельных мышц, температура тела, агрегация тромбоцитов и воспаление. Чтобы контролировать все эти функции, организм синтезирует указанные специфические соединения из жирных кислот, содержащихся в пищевых жирах, которые мы потребляем. Каждое из этих соединений (простаглатин, лейкотриен или тромбоксан) должно производится в нужном количестве, в нужное время и в нужном месте.

К «Омега 3» жирным кислотам относятся а-линоленовая, эйкозапентаеновая кислота и докозагексаеновая кислота, которые присутствуют в основном в рыбе, а также могут синтезироваться в организме из а-линоленовой кислоты. Эти вещества помогают также справится с воспалительными процессами, способствуют уменьшению содержания триглицеридов в крови, которые связаны напрямую с заболевание сердца и инсультом.

Известно, что в клетках из полиненасыщенных жирных кислот класса «Омега 3» синтезируется комплекс эйкозаноидов, воздействующий на процессы репликации и репарации в клетках организма.

Для обоснования антимутагенных свойств предложенного препарата были проведены исследования с использованием импортных приборов и аппаратов нового поколения.

I этап - лабораторные исследования воздействия эйкозаноидов на процессы репликации и репарации;

II этап - непосредственные исследования антимутагенных и репатогенных свойств предложенного препарата «Эйкозавитол».

Исследования проводились с использованием систем бесклеточного матричного синтеза ДНК в соответствии с рекомендациями фирмы-производителя, эйкозаноидов, а также меченых нуклеотидов (Amersham PB). Показания регистрировались на жидкостном автоматическом сцинтилляционном счетчике «Бета-2». Результаты проведенных исследований в рамках первого этапа свидетельствуют о том, что:

1. Эйкозаноиды продемонстрировали способность стимулировать синтез ДНК в 2-4 раза относительно контрольного уровня

2. Впервые установлено, что эйкозаноиды в отношении ДНК демонстрируют гиперхромный эффект, сопровождающий денатурацию ДНК и обусловленный снижением взаимной маскировки нуклеотидных оснований, а это свидетельствует о том, что эйкозаноиды уже в первые минуты после внесения в раствор, содержащий ДНК, вызывают изменение конформации полинуклеотидной молекулы. Этот эффект снижается к 15-й минуте и полностью исчезает в дальнейшем (спустя 60 минут), а обратимость гиперхромизма особо отчетлива на фоне изменения показателя светопоглощения денатурированной ДНК.

В настоящее время известно, что молекула ДНК может находиться в нескольких конформационных состояниях, различающихся шагом спирали, углами поворота между соседними парами оснований, наклоном плоскости пар к оси спирали, а также правой и левой формами. В частности, показано, что при внешних воздействиях ДНК способна из В-формы (правая) переходить в Z-форму (левая), причем переход в Z-форму играет большую регуляторную роль в связи с облегчением взаимодействия молекулы с ферментами (ДНК-полимеразой). В то же время можно считать доказанным, что эйкозаноиды уже в первые минуты изменяют конформационное состояние ДНК, проявляющееся разделением полинуклеотидных цепей («плавлением» ДНК) и гиперхромизмом.

3. На ДНК определяются участки связывания эйкозаноидов, обладающие выраженным аффинитетом. Оказалось, что нативная молекула ДНК имеет значительное число специфических сайтов связывания с высоким аффинитетом ко всем исследованным эйкозаноидам. В то же время температурная денатурация, сопровождающаяся лишь расхождением цепей ДНК, приводила к исчезновению сайтов связывания (хотя для ПГ Е1, PC 12 и Lt C4 эти участки сохраняются, но в значительно меньшем количестве - таблица 1).

Таблица 1.
Число (n) и аффинитет (Kac) рецепторов к эйкозаноидам на нативной и денатурированной ДНК
профилактически-лечебное антимутагенное средство и способ его   применения, патент № 2355408 Единицы измерения Нативная ДНК Денатурированная ДНК
ПГ А1n/10-12 М/мг4.40±0.88 0.00±0.00*
профилактически-лечебное антимутагенное средство и способ его   применения, патент № 2355408 Kac 10 9 М70.00±14.00 0.00±0.00*
ПГ А2 n/10-12 М/мг 7.93±1.590.00±0.00*
профилактически-лечебное антимутагенное средство и способ его   применения, патент № 2355408 Kac 10 9 М29.00±6.00 0.00±0.00*
ПГ Е1 n/10-12 М/мг 36.79±5.36 2.46±0.49*
профилактически-лечебное антимутагенное средство и способ его   применения, патент № 2355408 Kac 10 9 М34.00±7.00 35.90±720*
ПГ Е2 n/10-12 М/мг 10.57±2.11 0.00±0.00*
профилактически-лечебное антимутагенное средство и способ его   применения, патент № 2355408 Kac 10 9 М39.00±8,00 0.00±0.00*
ПГ F2а n/10-12 М/мг 4.09±0.82 0.00±0.00*
профилактически-лечебное антимутагенное средство и способ его   применения, патент № 2355408 Kac 10 9 М156.00±31.00 0.00±0.00*
Рс 12 n/10-12 М/мг 8.03±1.610.85±0.17*
профилактически-лечебное антимутагенное средство и способ его   применения, патент № 2355408 Kac 10 9 М27.00±5.00 25.0±5.00
ТхВ2 n/10-12 М/мг 113±0.230.00±0.00*
профилактически-лечебное антимутагенное средство и способ его   применения, патент № 2355408 Kac 10 9 М242.00±48.00 0.00±0.00*
LtC4 n/10-12 М/мг 6.33±1.270.46±0.09*
профилактически-лечебное антимутагенное средство и способ его   применения, патент № 2355408 Kac 10 9 М3100±6.00 39.00±8.00
* - здесь и далее, достоверность отличий показателя (р<0,05) по отношению к соответствующему контролю

В свою очередь, обратимость гиперхромизма и отсутствие высокочувствительных сайтов связывания на термически денатурированной молекуле позволяет с известной долей допущения определиться с областью связывания эйкозаноидов с молекулой нативной ДНК: аденин-тиминовые пары полинуклеотидных цепей. Это обусловлено большей прочностью гуанин-цитидиновых пар ввиду наличия у них сразу трех водородных связей, а гиперхромный эффект, регистрируемый до полного расхождения цепей молекулы, и его обратимость свидетельствует о сохранении гуанин-цитидиновых пар, являющихся формообразующими как для В, так и для Z-конформаций ДНК.

Приведенные данные дают возможность изложить общие моменты участия эйкозаноидов в индукции репликации ДНК, позволяющие описать их участие в репарации повреждений (мутагенеза) ДНК.

Эйкозаноиды взаимодействуют с высокочувствительными сайтами связывания двунитевой молекулы ДНК, что приводит к ее плавлению по аденин-тиминовым парам нуклеотидов, которое сопровождается обратимым гиперхромизмом, конформационным переходом ДНК, а новое конформационное состояние молекулы ДНК отличается от предыдущего новыми свойствами. Последнее выражается в потере способности ДНК реагировать на эйкозаноиды дальнейшим изменением конформации, облегчении присоединения праймера и ДНК-полимеразы и активации репликации ДНК. По мере образования двойной цепи при наличии эйкозаноидов в среде процесс повторяется.

Серией проведенных экспериментов установлено, что двойная спираль ДНК способна к непрерывному изменению конформации, в пределах двойной спирали переходить из В-формы в Z-форму, подвергаться локальному плавлению с образованием доступных участков однонитевой молекулы ДНК с последующим присоединением фермента и началом репликации ДНК. Изменение конформации и активация репликации ДНК может происходить при взаимодействии нуклеиновых оснований с эйкозаноидами. Подобная активация способна привести либо к интенсификации деления клеток, либо к увеличению клеточной популяции.

Обнаруженная неспецифическая стимуляция репликации ДНК посредством эйкозаноидов является одним из компонентов репарационных систем клетки, что указывает на антимутагенный эффект данного класса соединений.

В то же время применение эйкозаноидов для введения в организм нецелесообразно, так как срок их полужизни при парентеральном введении не превышает пяти минут. Еще одним аргументом в пользу применения препарата ПНЖК является то, что эйкозаноиды - внутриклеточные месседжеры и эффективны внутри клетки. Поэтому используя данные первого этапа исследований, для практического использования был предложен препарат «Эйкозавитол», включающий в свой состав доступные для эйкозаноидообразования ПНЖК.

На втором этапе исследований проводился плацебо-контролируемый эксперимент в группе людей (102 человека), проживающих в МО «г.Карпинск» Свердловской области, где наблюдается повышенный радиационный фон и высокое содержание генотоксикантов в воздухе, воде и почве.

Дозы и схема введения препарата «Эйкозавитол» определены на основании обзора по аналогам лабораторных опытов на животных и исследованиях на добровольцах и приняты из расчета 1-3 капсулы 3-4 раза в день при курсе приема 30-60 дней (по показаниям).

Медицинский контроль обследования отобранных пациентов в начале и в конце курса приема предложенного препарата, взятие и обработку необходимых анализов проводили сотрудники лаборатории молекулярных медицинских технологий Средне-Уральского Научного центра РАМН и Правительства Свердловской области при Уральской Государственной медицинской академии (г.Екатеринбург).

Испытуемые были разделены на 2 группы:

1. Испытуемые, принимавшие предложенный препарат, содержащий ПНЖК «Эйкозавитол», - 82 человека;

2. Контрольная группа испытуемых, не принимавших препарат - 20 человек.

Материалом для исследования послужили лейкоциты периферической крови, которые выделялись к градиенте фиколл-верографин (1,077).

Для оценки генотоксичности и состояния репарационных систем клетки применялся RAPD-анализ (анализ длин случайно амплифицированных последовательностей), в основе которого лежит полимеразная цепная реакция, по стандартным протоколам с применением меченных радионуклидами нуклеотидов (3H-dTTP, 3H-dCTP, 3 H-dATP).

ДНК из ядер лейкоцитов выделялась по методу фенольной депротеинизации. Перед постановкой полимеразной цепной реакции материал подвергался обработке лизирующим буфером для направленного расщепления цепей ДНК в щелочно-лабильных сайтах и местах одноцепочечных разрывов. В дальнейшем производилась отмывка фрагментов от лизирующего буфера и дополнительное их переосаждение. После чего материал ДНК вносился в реакционную ПЦР-смесь («НПО СибЭнзим»)

По окончании амплификации материал разделялся в агарозном геле с последующим переносом фрагментов на нитроцеллюлозные фильтры. Детекция результатов проводилась посредством регистрации сигнала на жидкостном автоматическом сцинтилляционном счетчике «Бета-2».

Указанный метод является достаточно информативным и позволяет получать количественные результаты для обоснования действия препарата. В основе его лежит то, что неповрежденная ДНК, имея размеры порядка 3-4 тыс. пар нуклеотидов, имеет крайне низкую подвижность в агарозном геле и соответственно проходит незначительное расстояние от места внесения в называемое образно «ядро». В отличие от нее участки ДНК, называемые «хвост», имеющие щелочно-лабильные сайты и места одноцепочечных разрывов, при обработке лизирующим буфером и амплификации дают фрагменты размером от 50 до 500 нуклеотидных пар и распределяются в геле на некотором расстоянии от «ядерной» ДНК. Таким образом, рассчитывая соотношение между «ядерной» и «хвостовой» ДНК (коэффициент фрагментации), можно в количественном выражении дать оценку степени повреждения ДНК клетки.

Для подтверждения эффективности предложенного препарата на втором этапе исследования до приема препарата «Эйкозавитол» у всех испытуемых был произведен забор периферической крови, которая была исследована на предмет уже имеющихся повреждений генома клеток.

Таблица 2
Показатели фрагментации ДНК до приема препарата «Эйкозавитол».
Группа Активность «ядра». Бк/нг ДНКАктивность «хвоста», Бк/нг ДНК Коэффициент фрагментации
Испытуемые1056,74±97,23 803, 82±69,42 0,76
Контроль921,51±86,5 681,92±46,85 0,74

Полученные результаты (Таблица 2) свидетельствуют о том, что степень повреждения генетического аппарата в группах испытуемых практически равны и составляют 0,76 и 0,74 соответственно, что позволило перейти непосредственно к проверке гипотезы об антимутагенных свойствах препарата «Эйкозавитол».

Первая группа испытуемых принимала препарат «Эйкозавитол» производства ООО «Тюменский химикофармацевтический завод" в течение месяца (30 дней) в количестве по 1 капсуле 3 раза в день (минимум по курсу), в то время как контрольная группа принимала плацебо, представляющее собой желатиновые капсулы, в том же количестве.

После окончания эксперимента был произведен вторичный забор периферической крови у всех испытуемых с последующим проведением RAPD-анализа.

Таблица 3
Показатели фрагментации ДНК после приема препарата «Эйкозавитол».
Группа Активность «ядра», Бк/нг ДНКАктивность «хвоста», Бк/нг ДНК Коэффициент фрагментации
Испытуемые749,63±52,95 442,28±35,71 0,59*
Контроль872,38±78,28 663,12±44,67 0,76

Исходя из представленных данных (Таблица 3) следует, что в группе контрольных лиц, принимавших обычные желатиновые капсулы (плацебо), коэффициент фрагментации значимо не изменился по сравнению с показателем до исследования. В группе испытуемых, принимавших препарат «Эйкозавитол», в указанных дозах (по минимуму) коэффициент фрагментации достоверно снизился по сравнению с Кфр до исследования на 22.3% (pпрофилактически-лечебное антимутагенное средство и способ его   применения, патент № 2355408 0,05) и на 22,4% (р>профилактически-лечебное антимутагенное средство и способ его   применения, патент № 2355408 0,05) по сравнению с Кфр в контрольной группе лиц.

Таким образом, в эксперименте на людях была практически доказана возможность и эффективность применения препарата «Эйкозавитол» в качестве средства, обладающего антимутагенными свойствами, за счет стимуляции репликативной активности в клетке посредством своих метаболитов - эйкозаноидов, и возможной активации репаративных механизмов защиты генома клетки, обоснованная на первом этапе исследований.

В отношении подтверждения предположения об активации репарации в клетках организма был проведен дополнительный эксперимент, в котором были совмещены RAPD-анализ и моделирование воздействия малых доз ионизирующего излучения.

Отобранную часть выделенной лейкоцитарной фракции испытуемых после окончания эксперимента, подвергали воздействию ионизирующего излучения (портативной рентгеновской установкой) в суммарной дозе, близкой к годовой дозе для «группы риска» (5 сГр). После облучения часть лейкоцитарной фракции исследовалась по методике RAPD-анализа, а другую в течение 2 часов культивировали в среде RPMI-1640 с добавлением плазмы испытуемых с целью стимуляции репаративных процессов в ядросодержащих клетках крови. ДНК из клеток выделяли методом фенольной депротеинизации и проводили RAPD-анализ с использованной ранее группой праймеров в стандартных условиях.

Таблица 4
Показатели фрагментации ДНК облученных лейкоцитов периферической крови до культивирования
ГруппаАктивность «ядра», Бк/нг ДНК Активность «хвоста», Бк/нг ДНК Коэффициент фрагментации
Испытуемые428,52±41,24 1251,28±94,26 2,92
Контроль271,47±28,69 1009,87±95,94 3,72

Из полученных результатов (Таблица 4) следует, что ионизирующее излучение наносит достаточно серьезные повреждения ядерной ДНК, а доля наносимого им повреждения в 4,9 раза превышает уровень повреждений в ДНК без облучения (исследованные образцы после проведения эксперимента).

Таблица 5.
Показатели фрагментации ДНК облученных лейкоцитов периферической крови после культивирования
ГруппаАктивность «ядра», Бк/нг ДНК Активность «хвоста», Бк/нг ДНК Коэффициент фрагментации
Испытуемые665,56±52,39 1457,58±98,65 2,19*
Контроль342,39±37,57 1242,89±94,94 3,63

В то время как после проведения культивации облученных лейкоцитов (Таблица 5) с целью стимуляции репаративной активности показатель Кфр контрольной группы снизился на 2,4% по сравнению с облученными образцами без культивации, Кфр ядерной ДНК лейкоцитов испытуемых первой группы после культивации достоверно снизился (рпрофилактически-лечебное антимутагенное средство и способ его   применения, патент № 2355408 0,05) на 25,1%.

Полученные результаты можно объяснить с привлечением двух механизмов:

1. Стимуляцией репаративной активности в клетках испытуемых, принимавших препарат «Эйкозавитол» по заданной схеме в профилактических целях.

2. Присутствием в сыворотке крови испытуемых первой группы «факторов, репарации», представляющих собой метаболиты препарата - эйкозаноиды, проявляющие выраженную активность в отношении стимуляции репликативных процессов в клетках.

Таким образом, представленные материалы исследований убедительно свидетельствуют о том, что предложенный препарат полиненасыщенных жирных кислот «Эйкозавитол» обладает выраженным новым неочевидным антимутагенным эффектом за счет способности его метаболитов стимулировать репликативную активность и соответственно репаративные процессы в клетках. Проведенные эксперименты на жителях МО «г.Карпинск» позволяют сделать вывод о том, что названный препарат в указанных дозах может быть эффективно использован в качестве нового антимутагенного средства для защиты генома человека от вредного воздействия факторов окружающий среды и может рассматриваться по новому назначению как профилактически-лечебное антимутагенное средство, расширяя ассортимент препаратов антимутагенного действия, полученных из оригинального сырья.

Новизной изобретения является то, что, основываясь на исследованиях действий эйкозаноидов на ДНК, в результате дополнительного изучения и детального исследования свойств препарата "Эйкозавитол" установлены его новые уникальные антимутагенные свойства и неизвестная раннее способность восстанавливать ДНК, поврежденную вследствие воздействия неблагоприятных факторов окружающей среды, в частности, ионизирующим излучением природного или техногенного характера, причем эффективность выявленных новых свойств подтверждена в широкомасштабных производственных опытах на добровольцах в зоне экологического неблагополучия, а предложенные дозы применения препарата по новому назначению отличаются от ранее рекомендованных курсов приема по ранее известному назначению.

Класс A61K35/60 рыбы

биорегуляторный комплекс, обладающий тканеспецифическим регенеративным действием, способ его получения и способ лечения катаракты с его использованием -  патент 2513994 (27.04.2014)
способ комплексной переработки рыбного сырья для получения гиалуроновой кислоты и коллагена -  патент 2501812 (20.12.2013)
способ получения комплекса биологически активных веществ из печени рыб тресковых пород -  патент 2495672 (20.10.2013)
способ получения жира из печени акулы катран -  патент 2494752 (10.10.2013)
биологически активный комплекс, обладающий противоаллергическим действием -  патент 2493861 (27.09.2013)
распадающаяся во рту композиция, содержащая полиненасыщенные жирные кислоты, не имеющая неприятного запаха или вкуса -  патент 2493842 (27.09.2013)
способ лечения некроза головки бедренной кости -  патент 2487682 (20.07.2013)
способ проведения наркоза в эксперименте -  патент 2478386 (10.04.2013)
способ лечения эндометрита у коров -  патент 2475253 (20.02.2013)
способ получения пептидного комплекса из печени рыб тресковых пород -  патент 2472517 (20.01.2013)

Класс A61K31/202  имеющие три или более двойных связей, например линоленовая кислота

улучшение памяти у пациентов с оценкой 24-26 баллов по краткой шкале оценки психического статуса -  патент 2529815 (27.09.2014)
композиции и способы понижения уровня триглицеридов без повышения уровня хс-лпнп у субъекта, получающего сопутствующую терапию -  патент 2519043 (10.06.2014)
альфа-замещенные омега-3 липиды, которые являются активаторами или модуляторами рецептора, активируемого пролифераторами пероксисом (ppar) -  патент 2507193 (20.02.2014)
способы лечения гипертриглицеридемии -  патент 2505292 (27.01.2014)
способы и композиции для перорального введения протеинов -  патент 2504373 (20.01.2014)
новое применение жирной кислоты (жирных кислот) omega-3 -  патент 2501557 (20.12.2013)
фармацевтические составы (рецептуры) на основе неполярных и полярных липидов для офтальмологического применения -  патент 2495661 (20.10.2013)
распадающаяся во рту композиция, содержащая полиненасыщенные жирные кислоты, не имеющая неприятного запаха или вкуса -  патент 2493842 (27.09.2013)
композиция для регулирования прохождения катализируемых липазой реакций -  патент 2491057 (27.08.2013)
фармацевтические композиции, содержащие ера и сердечно-сосудистое средство, и способ их применения -  патент 2489145 (10.08.2013)

Класс A61P43/00 Лекарственные средства для специфических целей, не указанные в группах  1/00

улучшение памяти у пациентов с оценкой 24-26 баллов по краткой шкале оценки психического статуса -  патент 2529815 (27.09.2014)
способ лечения больных с синдромом внутрипеченочной портальной гипертензии -  патент 2529414 (27.09.2014)
способ лечения ран мягких тканей различной этиологии -  патент 2528905 (20.09.2014)
хиназолиноны как ингибиторы пролилгидроксилазы -  патент 2528412 (20.09.2014)
новый агонист бета рецептора тиреоидного гормона -  патент 2527948 (10.09.2014)
стабильная жидкая фармацевтическая композиция комплекса 3-(2,2,2-триметилгидразиний) пропионат-2-этил-6-метил-3-гидроксипиридина дисукцината, обладающая антигипоксическим, антиоксидантным и адаптогенным действием -  патент 2527347 (27.08.2014)
четырехзамещенные бензолы -  патент 2527177 (27.08.2014)
способ коррекции негативных эффектов низких температур на предстательную железу крыс -  патент 2527172 (27.08.2014)
способ модулирования биологических функций, ассоциированных с процессом старения пожилого или старого животного-компаньона. -  патент 2525617 (20.08.2014)
гомографт сердечно-сосудистой системы (варианты), способ получения гомографта, среда для воздействия на ткани гомографта (варианты) -  патент 2525197 (10.08.2014)
Наверх