способ получения промышленных силуминов

Классы МПК:C22F1/04 алюминия или его сплавов 
C22C1/06 с применением особых средств для рафинирования или раскисления 
Автор(ы):, , ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования Сибирский государственный индустриальный университет (RU)
Приоритеты:
подача заявки:
2006-07-13
публикация патента:

Изобретение относится к области цветной металлургии и может быть использовано для получения изделий из промышленных силуминов. Проводят наводороживание при температуре 730-750°С в течение 0,5-1 часа. Затем осуществляют старение при нагреве до 200-300°С с выдержкой в указанном интервале температур и охлаждением на воздухе. Получают промышленные силумины со сниженным значением коэффициента линейного расширения в интервале температур 200-300°С. 1 ил., 1 табл. способ получения промышленных силуминов, патент № 2320770

способ получения промышленных силуминов, патент № 2320770

Формула изобретения

Способ получения промышленных силуминов, включающий наводороживание расплава водяным паром в процессе приготовления, кристаллизацию и старение, отличающийся тем, что наводороживание проводят при температуре 730-750°С в течение 0,5-1 ч, старение проводят при 200-300°С с выдержкой в указанном интервале температур и охлаждением на воздухе.

Описание изобретения к патенту

Изобретение относится к области цветной металлургии и может быть использовано для получения изделий из промышленных силуминов.

Современная промышленность, в частности автомобильная, нуждается в легких сплавах на основе алюминия с низкими значениями коэффициента линейного расширения (КЛР) для изготовления из них деталей с малой изменяемостью размеров в рабочем интервале температур. Поэтому изыскание возможных способов снижения значений КЛР алюминиевых сплавов, в первую очередь силуминов, является актуальной проблемой как в нашей стране, так и за рубежом.

Известен способ получения алюминиевых сплавов, включающий приготовление расплава, кристаллизацию, нагрев до 200-300°С, выдержку в течение 2-12 часов и охлаждение на воздухе (Смирягин А.П. Промышленные цветные металлы и сплавы. - М.: Металлургия, 1974. - С.424 и 428). Недостатком известного способа является сохранение высоких значений КЛР сплавов в интервале 200-300°С.

Наиболее близким к предлагаемому по технической сущности и достигаемому результату является способ получения алюминиевых сплавов, включающий наводороживание расплава водяным паром в процессе приготовления, кристаллизацию и старение (SU 739122, МПК С22С 1/02, 05.06.1980). Однако применение этого способа недостаточно снижает значения КЛР сплавов в интервале 200-300°С.

Задачей изобретения является снижение значений коэффициента линейного расширения промышленных силуминов в интервале 200-300°С.

Поставленная задача решается следующим образом: способ получения силуминов включает наводороживание расплава путем продувки водяным паром при температуре 730-750°С в течение 0,5-1,0 часа, кристаллизацию и старение в интервале 200-300°С с выдержкой в указанном интервале температур и охлаждением на воздухе.

Приготовление алюминиевых сплавов по предлагаемому способу позволяет значительно снизить значения коэффициента линейного расширения. Это обусловлено тем, что наводороживание расплава алюминиевых сплавов при последующем старении в интервале 200-300°С ускоряет диффузионные процессы в сплавах. Это в конечном итоге приведет к активному удалению водорода из твердого раствора сплава, что и обусловит снижение значений коэффициента линейного расширения.

Проведение наводороживания расплава продувкой водяным паром при температуре 730-750°С в течение 0,5-1,0 часа является оптимальным для снижения значений коэффициента линейного расширения в интервале 200-300°С.

Пример. Испытания проводили на литейных сплавах марок АК12 и АК12ММгН. Для их приготовления использовали алюминий марки А7, технически чистые шихтовые металлы и лигатуры. Полученные слитки толщиной 15-18 мм подвергали обработке по известному и предлагаемому способам. Наводороживание расплава осуществляли продувкой его водяным паром при температуре 730-750°С в течение 0,5-1,0 часа. Из полученных слитков вырезали образцы для дилатометрических испытаний.

Измерение КЛР проводили на оптическом дифференциальном дилатометре Шевенара. Результаты испытаний приведены в таблице. Для наглядности влияние условий приготовления сплава АК12 по предлагаемому способу на линейное расширение его в различных состояниях дополнительно приведено на чертеже.

Из данных таблицы и чертежа видно, что применение предложенного сплава по сравнению с известным позволяет снизить коэффициент линейного расширения в интервале 200-300°С для сплавов АК12 и АК12ММгН в среднем на 6-20%, что является важным для использования таких сплавов при производстве поршней двигателей внутреннего сгорания с целью повышения их эксплуатационной стойкости за счет малой изменяемости размеров в рабочем интервале температур.

Таблица
Влияние наводороживания расплава и старения на линейное расширение промышленных силуминов
Сплав, способ приготовленияКоэффициент линейного расширения способ получения промышленных силуминов, патент № 2320770 ·106, град-1 при температуре испытания, °С
50100150 200250300 350400450
1. АК12 Наводороживание расплава водяным паром при t=740°С, 0,5 ч, старение твердого сплава при t=300°С, 2 ч18,5818,92 18,3417,10 17,4017,8217,74 16,7816,39
Наводороживание расплава водяным паром при t=750°С, 1 ч, старение твердого сплава при t=300°С, 4 ч 16,8017,0816,98 16,0716,51 16,8217,1116,09 16,07
2. АК12ММгН Наводороживание расплава водяным паром при t=730°C, 1 ч и старение твердого сплава при t:             
200°С - 4 ч 17,7819,9519,30 20,2620,51 21,4021,2618,78 17,50
250°С - 2 ч18,1419,36 19,7320,75 20,5421,1420,74 19,3018,15
300°С - 1 ч18,14 19,1519,73 20,7521,2721,67 21,7321,38 20,30

Класс C22F1/04 алюминия или его сплавов 

способ изготовления продукта-плиты из алюминиевого сплава с низкими уровнями остаточного напряжения -  патент 2524291 (27.07.2014)
способ формирования листовых компонентов из алюминиевого сплава -  патент 2524017 (27.07.2014)
отжиг холоднокатаной металлической полосы -  патент 2507299 (20.02.2014)
способ регулирования долговечности изделия из алюминия, работающего в условиях ползучести -  патент 2502825 (27.12.2013)
способ горячего изостатического прессования отливок из алюминиевых сплавов -  патент 2501880 (20.12.2013)
способ получения износостойкого антифрикционного самосмазывающегося сплава -  патент 2492964 (20.09.2013)
способ изготовления катаных изделий из деформируемых термически неупрочняемых сплавов системы алюминий - магний -  патент 2483136 (27.05.2013)
способ получения высокотемпературного сверхпроводника в системе алюминий - оксид алюминия -  патент 2471269 (27.12.2012)
способ повышения сопротивления усталости конструкционных металлических материалов -  патент 2471002 (27.12.2012)
способ изготовления пустотелых изделий -  патент 2469121 (10.12.2012)

Класс C22C1/06 с применением особых средств для рафинирования или раскисления 

Наверх