многослойный сильфонный компенсатор

Классы МПК:F16L51/02 с сильфонами или деформируемыми фальцованными или гофрированными трубами 
Автор(ы):, , ,
Патентообладатель(и):ОАО "НПО Энергомаш им. академика В.П. Глушко" (RU)
Приоритеты:
подача заявки:
2002-12-24
публикация патента:

Изобретение относится к трубопроводному транспорту и используется в трубопроводных системах, транспортирующих высокоагрессивные среды. Многослойный сильфонный компенсатор содержит несколько слоев гофрированных оболочек, концевые участки которых посредством сварки соединены с силовыми кольцами. Толщина внутреннего слоя сильфона, находящегося в контакте с окислительной средой высокой температуры и давления, превышает толщину других слоев сильфона в 2-3 раза. Внутренний слой сильфона выполнен из хромоникелевого сплава с содержанием никеля не менее 70%, а другие слои выполнены из нержавеющей стали. В качестве хромоникелевого сплава использован сплав марки ХН78Т (ЭИ435). Повышает надежность трубопроводов. 1 ил. многослойный сильфонный компенсатор, патент № 2272954

многослойный сильфонный компенсатор, патент № 2272954

Формула изобретения

Многослойный сильфонный компенсатор, содержащий несколько слоев гофрированных оболочек, к которым посредством сварки присоединены силовые кольца, причем внутренний слой сильфона, находящийся в контакте с окислительной средой высокой температуры и давления, выполнен толще других слоев, отличающийся тем, что внутренний слой сильфона выполнен из хромоникелевого сплава с содержанием никеля не менее 70%, а другие слои - из нержавеющей стали, при этом внутренний слой в 2-3 раза толще каждого слоя из нержавеющей стали.

Описание изобретения к патенту

Область техники

Изобретение относится к области машиностроения и, в частности, к сильфонным компенсаторам, применяемым в трубопроводных системах, по которым транспортируется окислительный газ (газ с большим содержанием кислорода до 80%) высокой температуры 500°С и давления 10 МПа.

Предшествующий уровень техники

При проектировании многослойных сильфонных компенсаторов, работающих в газовой среде с большим содержанием кислорода, высокой температуры и давления, основными требованиями являются обеспечение высокой прочности и герметичности сильфона, большие ресурсные характеристики и надежная защита внутреннего слоя сильфона от возгорания в указанной среде.

Эти требования реализуются за счет применения новых материалов, стойких в указанной среде, и совершенствования деталей и узлов компенсатора.

В качестве материалов, которые используются в таких сильфонных компенсаторах, применяют никелевые сплавы с большим содержанием никеля, никелевые дисперсионно-твердеющие сплавы, нержавеющие стали и никелевые оболочки.

Известны сильфонные компенсаторы, гофрированные оболочки которых выполняют из никелевого сплава "Монель" с содержанием никеля многослойный сильфонный компенсатор, патент № 227295470% (см. справочник "Expansion Joint", Hudra, с. 472, 6-я строка снизу).

Технология изготовления таких сильфонов не требует специального сложного оборудования и больших затрат времени. Более того, такой никелевый сплав обладает хорошей пластичностью, что позволяет получить гофрированные оболочки сильфона толщиной до 1 мм, однако, он имеет низкие прочностные свойства, что не позволяет использовать его в трубопроводных магистралях высокого давления.

Кроме того, из-за утолщения оболочек сильфона и низкой склонности этого сплава к окислению исключается возможность появления микропор и непроваров в сварочных швах компенсатора.

Такие компенсаторы надежно работают в окислительной газовой среде, однако они дороги в изготовлении.

Данное техническое решение принимаем за аналог предлагаемого изобретения.

Известен сильфонный компенсатор, выполненный из никелевого дисперсионно-твердеющего сплава (см. патент РФ №2164188, МКИ B 21 D 15/00 от 20.03.2001). Данный компенсатор выполнен из тонкостенных оболочек толщиной многослойный сильфонный компенсатор, патент № 22729540,15 мм, концевые участки которых сварены с силовыми кольцами. Указанный компенсатор работоспособен в окислительной газовой среде высокой температуры и давления, свободной от инициаторов возгорания.

Способ изготовления компенсатора включает вытяжку за несколько операций трубной заготовки толщиной 1 мм до заданных размеров »0,15 мм, специальную термообработку после каждой операции вытяжки, гофрирование пакета заготовок также за несколько операций, термообработку после каждой операции гофрирования, сварку концевых участков сильфона с силовыми кольцами и контроль межслойной герметичности.

Кроме того, использование в качестве материала заготовок сильфона никелевого дисперсионно-твердеющего сплава в процессе вытяжки и гофрирования заготовок вследствие низкой пластичности этого сплава возможно образование в оболочках микротрещин и микропор.

Причем микропоры и непровары могут образовываться и в сварных швах между концевыми участками сильфона и силовыми кольцами из-за повышенной склонности этого сплава к окислению при сварке. Этому способствует также применение утоненных заготовок многослойный сильфонный компенсатор, патент № 22729540,15 мм.

Это обстоятельство ограничивает использование таких материалов для изготовления сильфонных компенсаторов указанного назначения.

Это техническое решение является аналогом предлагаемого изобретения.

Известен многослойный сильфонный компенсатор, состоящий из нескольких слоев гофрированных оболочек, которые выполнены из нержавеющей стали, при этом внутренний слой сильфона, контактирующий с газовой средой, выполнен толще других слоев приблизительно на 0,25 мм (см. патент Великобритании №984750, НКИ F 2 G, 3.03.1965 г.).

Это техническое решение принимаем за прототип предлагаемого изобретения.

Применение в этом сильфонном компенсаторе внутреннего слоя толще других слоев позволяет увеличить его ресурсные характеристики и обеспечить надежную герметизацию этого слоя за счет утолщения.

Многослойные сильфонные компенсаторы, изготавливаемые из нержавеющих сталей, дисперсионно-твердеющих сталей, никелевых сплавов с содержанием никеля до 65%, надежно работают в «чистой» окислительной газовой среде высокой температуры и давления.

Однако материалы указанных выше сильфонов возгораются в газовой окислительной среде при температуре порядка 500°С при наличии в потоке частиц инициаторов возгорания.

Это связано с воздействием на материал внутренних слоев сильфона инициаторов зажигания - источников тепла (металлические частицы, окислы металлов, органические вещества - масла, резина).

Инициаторы зажигания нагревают материал внутреннего слоя сильфона до температуры самовоспламенения, что приводит к его зажиганию и разрушительному горению.

Практика отработки и эксплуатации энергетических установок, вырабатывающих окислительный газ высокой температуры и давления, подтвердили реальную опасность зажигания указанных выше конструкционных материалов и разгара конструкционных узлов, например многослойных сильфонных компенсаторов, в результате воздействия металлических частиц при температурах окислительного газа, превышающих 500°С.

Задача настоящего изобретения состоит в создании многослойного сильфонного компенсатора, в котором его внутренний слой обладал бы высокой стойкостью к возгоранию (зажиганию) металлическими частицами в газовой окислительной среде высокой температуры и давления.

Эта задача решена за счет того, что в многослойном сильфонном компенсаторе, содержащем несколько слоев гофрированных оболочек, концевые участки которых посредством сварки соединены с силовыми кольцами, причем внутренний слой сильфона, находящийся в контакте с окислительной газовой средой высокой температуры и давления, выполнен толще других слоев и выполнен из хромоникелевого сплава ХН78Т (ЭИ435), а другие слои - из нержавеющей стали.

Другой отличительной особенностью многослойного сильфонного компенсатора является то, что внутренний слой в два-три раза толще каждого нержавеющего слоя.

Технический результат от использования изобретения состоит в исключении возгорания материала сильфона в окислительной газовой среде высокой температуры и давления даже при попадании в нее металлических частиц, повышение его циклической прочности и сохранение прочностных характеристик при меньших слоях сильфона из нержавеющей стали.

На чертеже представлено сечение многослойного сильфонного компенсатора.

Пример реализации изобретения

Многослойный сильфонный компенсатор 1 содержит несколько слоев гофрированных оболочек 2. Гофрированные оболочки 2 жестко и герметично соединены с силовыми кольцами 3 и 4 посредством сварных швов 5 и 6. При помощи силовых колец 3 и 4 компенсатор закрепляется в трубопроводной системе (не показано). Внутренний слой 7, находящийся в контакте с окислительной средой высокой температуры и давления, выполнен из хромоникелевого сплава с содержанием никеля не менее 70%, например из сплава ХН78Т (ЭИ435). Другие слои 8 сильфонного компенсатора 1 выполнены из нержавеющей стали, например из стали 12Х18Н10Т. При этом внутренний слой 7 многослойного сильфона толще в 2-3 раза каждого слоя из нержавеющей стали.

Значительная толщина внутреннего слоя сильфона обеспечила надежную защиту его от возгорания, а также позволила обеспечить более надежное сварное соединение сильфона с силовыми кольцами.

Запас прочности сильфона с внутренним слоем из никелевого сплава стал выше запаса прочности сильфона из стали, так как увеличилась прочность сильфона за счет использования более прочного никелевого сплава ХН78Т - у него многослойный сильфонный компенсатор, патент № 2272954 в>65 кГс/мм2, а у стали 12Х18Н10Т многослойный сильфонный компенсатор, патент № 2272954 в>56 кГс/мм2.

Из-за увеличения толщины внутреннего слоя стало возможным применение рентгенографического контроля продольного шва заготовки сильфона.

Проведенные автономные испытания многослойного сильфонного компенсатора с внутренним слоем сильфона из никелевого сплава показали большую надежность по сравнению с сильфонами из стали 12Х18Н10Т.

Конструкция указанного сильфонного компенсатора с внутренним слоем из сплава ХН78Т позволила десятикратно увеличить количество изгибных циклов.

Замена двух или трех слоев из нержавеющей стали в известной конструкции сильфона на один из никелевого сплава ХН78Т практически не изменила жесткости многослойного сильфона.

Утолщение внутреннего слоя многослойного сильфона повышает стойкость к возгоранию в указанной среде, т.к. более толстый слой труднее поджечь, чем тонкий.

По данным экспериментов, проводимых в Центре имени Келдыша, сплав ХН78Т не зажигается в условиях самого жесткого воздействия частиц алюминия в модельных условиях при температуре окислительного газа 700°С (см. «Труды «НПО Энергомаш» №22, Москва, 2004 г., стр.217).

Работа устройства

При установке сильфонного компенсатора в трубопроводную систему (не показано), по которой транспортируется окислительная газовая среда высокой температуры и давления, все слои сильфона будут воспринимать высокое давление, а внутренний утолщенный слой из хромоникелевого сплава будет локализовать очаги возгорания при воздействии инициаторов зажигания в окислительном газе высокой температуры и давления.

Промышленная применимость

Предложенный многослойный сильфонный компенсатор предназначен для использования в ракетном двигателестроении. Он может также использоваться в других отраслях техники в условиях повышенных температур и давлений при наличии агрессивных сред.

Внедрение сильфонного компенсатора данной конструкции в производство почти не потребует дополнительного технологического оборудования.

Класс F16L51/02 с сильфонами или деформируемыми фальцованными или гофрированными трубами 

подвижное соединение фланцев металлических труб -  патент 2514809 (10.05.2014)
компенсатор -  патент 2511853 (10.04.2014)
керамический компенсационный элемент для радиальной и осевой подвижности с защитой от проникновения воды -  патент 2476755 (27.02.2013)
компенсационное устройство трубопровода (варианты) -  патент 2451864 (27.05.2012)
температурное компенсационное устройство для трубопроводов -  патент 2445542 (20.03.2012)
компенсатор трубопровода -  патент 2439419 (10.01.2012)
сильфонный компенсатор для бесканальной прокладки -  патент 2431072 (10.10.2011)
регулирующее устройство байпасного типа -  патент 2426928 (20.08.2011)
компенсатор для трубопроводов -  патент 2406913 (20.12.2010)
компенсатор -  патент 2398154 (27.08.2010)
Наверх