ювелирный материал - синтетический поликристаллический корунд "мариит" и способ получения изделий из ювелирного материала - синтетического поликристаллического корунда

Классы МПК:C30B29/20 оксиды алюминия
C30B28/00 Получение гомогенного поликристаллического материала с определенной структурой
C30B31/02 контактированием с диффузионным материалом в твердом состоянии
C30B33/02 термообработка
A44C27/00 Изготовление ювелирных изделий или прочих украшений
Автор(ы):
Патентообладатель(и):Жалнин Виктор Васильевич (RU),
Преображенский Валерий Сергеевич (RU),
Морозов Борис Александрович (RU),
Петрова Вера Михайловна (RU),
Комягин Юрий Петрович (RU)
Приоритеты:
подача заявки:
2003-02-13
публикация патента:

Изобретение относится к технологии ювелирного производства, точнее к способам получения цветных ювелирных вставок, а также вставок с применением ювелирных эмалей, и предназначено для использования в ювелирной промышленности тиражом. Сущность изобретения: ювелирный материал - синтетический поликристаллический корунд состоит из глинозема, цветообразующих добавок и связки-парафина. Для получения нужного цвета к глинозему может быть добавлен оксид молибдена в количестве 0,03% для получения черного цвета; оксид вольфрама в количестве 0,01% для получения серого цвета; оксид неодима в количестве 0,01% для получения голубого цвета; оксид эрбия в количестве 0,01% для получения розового цвета; оксид хрома в количестве 0,05% для получения красного цвета. Способ получения изделий из ювелирного материала - синтетического поликристаллического корунда, состоящего из глинозема, цветообразующих добавок и связки-парафина, осуществляют путем формования на литьевых машинах при давлении 4 атм и обжига, причем первый обжиг проводят в печах непрерывного действия для выжига связки в течение 90 час при температуре Т-1150°С, а второй - в печах периодического действия в течение 170 час при температуре Т-1750°С для образования и спекания микрокристаллов, составляющих цветной полупрозрачный черепок изделия плотностью 4 г/см3 и твердостью 9 ед. по шкале Мооса, который затем полируют алмазными материалами. Изобретение позволяет получать в условиях промышленного производства готовые изделия в виде ювелирных вставок с высококачественным миниатюрным рельефом из цветного корунда, по твердости уступающего только алмазу. 2 с. и 5 з.п. ф-лы.

Формула изобретения

1. Ювелирный материал - синтетический поликристаллический корунд, состоящий из глинозема, цветообразующих добавок и связки-парафина.

2. Ювелирный материал по п.1, в котором в качестве цветообразующей добавки используют оксид молибдена в количестве 0,03% для получения черного цвета.

3. Ювелирный материал по п.1, в котором в качестве цветообразующей добавки используют оксид вольфрама в количестве 0,01% для получения серого цвета.

4. Ювелирный материал по п.1, в котором в качестве цветообразующей добавки используют оксид неодима в количестве 0,01% для получения голубого цвета.

5. Ювелирный материал по п.1, в котором в качестве цветообразующей добавки используют оксид эрбия в количестве 0,01% для получения розового цвета.

6. Ювелирный материал по п.1, в котором в качестве цветообразующей добавки используют оксид хрома в количестве 0,05% для получения красного цвета.

7. Способ получения изделий из ювелирного материала - синтетического поликристаллического корунда из глинозема, цветообразующих добавок и связки - парафина - путем формования на литьевых машинах при давлении 4 атм и обжига, причем первый обжиг проводят в печах непрерывного действия для выжига связки в течение 90 ч при температуре Т-1150°С, а второй - в печах периодического действия в течение 170 ч при температуре Т-1750°С для образования и спекания микрокристаллов, составляющих цветной полупрозрачный черепок изделия плотностью 4 г/см3 и твердостью 9 ед. по шкале Мооса, который затем полируют алмазными материалами.

Описание изобретения к патенту

Изобретение относится к технологии ювелирного производства, точнее к способам получения цветных ювелирных вставок, а также вставок с применением ювелирных эмалей, и предназначено для использования в ювелирной промышленности тиражом.

В настоящее время способ Вернейля является основным при производстве синтетических монокристаллических корундов.

Для ювелирной промышленности в настоящее время выращивают булю около 150 мм; ювелирный материал - синтетический поликристаллический корунд   "мариит" и способ получения изделий из ювелирного материала   - синтетического поликристаллического корунда, патент № 225370635 мм, которая пригодна для огранки по форме, обычно принятой для ювелирных камней, хотя потери при огранке достигают 98%. Выращенная в печи буля представляет собой материал в виде упорядочно расположенных по кристаллографической оси кристаллов, пересекающихся под углом 60°, имеющих сетку, образованную мельчайшими плоскостями - боковыми изогнутыми линиями роста ромбоэдров корунда, которые плотно примыкают друг к другу, создавая прозрачность материала.

Однако для промышленных целей способ Вернейля усовершенствован очень мало.

Известен монокристаллический корунд и способ его получения из оксида алюминия и цветообразующих добавок с последующей термообработкой кристалла при 1600-1850°С и 1100-1150°С (US 3897529, МПК F 27 D 71/00, 29.07.1975 г.), но и он не позволяет получать уже готовые изделия, поскольку требует последующей обработки путем распиловки, обдирки, доводки, шлифовки, полировки, сверления, огранки, галтовки, гравировки с доведением материала до изделия.

Технический результат заключается в создании промышленного изготовления ювелирного материала с возможностью получения в условиях промышленного производства тиража готовых изделий в виде ювелирных вставок с высококачественным миниатюрным рельефом из цветного поликристаллического корунда, по твердости уступающего только алмазу.

Технический результат достигается ювелирным материалом - синтетическим поликристаллическим корундом, состоящим из глинозема, цветообразующих добавок и связки-парафина.

При этом в качестве цветообразующей добавки используют оксид молибдена в количестве 0,03% для получения черного цвета; оксид вольфрама в количестве 0,01% для получения серого цвета; оксид неодима в количестве 0,01% для получения голубого цвета; оксид эрбия в количестве 0,01% для получения розового цвета; оксид хрома в количестве 0,05% для получения красного цвета.

Технический результат также достигается способом получения изделий из ювелирного материала - синтетического поликристаллического корунда из глинозема, цветообразующих добавок и связки-парафина путем формования на литьевых машинах при давлении 4 атм и обжига, причем первый обжиг проводят в печах непрерывного действия для выжига связки в течение 90 час при температуре Т-1150°С, а второй - в печах периодического действия в течение 170 час при температуре Т-1750°С для образования и спекания микрокристаллов, составляющих цветной полупрозрачный черепок изделия плотностью 4 г/см3 и твердостью 9 ед. по шкале Мооса, который затем полируют алмазными материалами.

Ювелирный материал получают следующим образом:

- в качестве исходного материала используют глинозем А 1203 марки ВК-100-1(2);

- измельчают его в шаровых мельницах;

- просеивают, после чего

- вводят целевую цветообразующую добавку и связку-парафин в количестве 1,5%.

Для получения нужного цвета к глинозему добавляют оксиды молибдена, вольфрама, неодима, эрбия или хрома в соответствующих количествах.

Изделия из поликристаллического корунда получают путем его формования на литьевых машинах под давлением 4 атм при температуре 80°С и двухступенчатого отжига.

Отформованный поликристаллический корунд с двойным режимом обжига в течение 10 суток для создания и спекания микрокристаллов дает возможность получать ГОТОВОЕ ИЗДЕЛИЕ, создавая менее прозрачные, из-за неупорядочного расположения микрокристаллов, но просвечивающие, полупрозрачные и непрозрачные изделия с твердостью 9 ед. по шкале Мооса без дальнейшей механической обработки, кроме полировки.

Таким образом, изобретение позволяет получать высококачественные отформованные ГОТОВЫЕ ИЗДЕЛИЯ со сложным миниатюрным рельефом, что невозможно выполнить в материале монокорунда без резьбы по камню и гравировки на твердых камнях при изготовлении камей, гемм, минискульптур, минирельефов.

Также, изобретение позволяет получать изделие - вставку со сложным миниатюрным рельефом химически нейтральной подложки, состоящей из микроскопических кристаллов поликорунда, обеспечивающих сцепляемость ювелирных эмалей с подложкой при многократном обжиге эмалей локальных цветов и эмалей с ярконасыщенными цветами полутонов, без применения драгоценных металлов, применяемых для изготовления подложек выемочных эмалей.

Класс C30B29/20 оксиды алюминия

способ и устройство для выращивания монокристаллов сапфира -  патент 2520472 (27.06.2014)
сапфир с r-плоскостью, способ и устройство для его получения -  патент 2448204 (20.04.2012)
способ и установка для выращивания монокристалла сапфира с ориентацией в с-плоскости -  патент 2436875 (20.12.2011)
способ выращивания монокристалла сапфира на затравочном кристалле, остающемся в расплаве, в автоматическом режиме -  патент 2423559 (10.07.2011)
устройство для выращивания монокристаллов сапфира -  патент 2419689 (27.05.2011)
способ выращивания монокристалла сапфира на затравочном кристалле, остающемся в расплаве в процессе выращивания -  патент 2417277 (27.04.2011)
сапфировая подложка (варианты) -  патент 2414550 (20.03.2011)
способ выращивания тугоплавких монокристаллов -  патент 2404298 (20.11.2010)
установка для выращивания монокристаллов, например, сапфиров -  патент 2404297 (20.11.2010)
способ получения алюмооксидной нанокерамики -  патент 2402506 (27.10.2010)

Класс C30B28/00 Получение гомогенного поликристаллического материала с определенной структурой

способ синтеза поликристаллов полупроводникового соединения групп ii-vi -  патент 2526382 (20.08.2014)
поликристаллический алмаз -  патент 2522028 (10.07.2014)
способ получения оптических поликристаллических материалов на основе селенида цинка -  патент 2516557 (20.05.2014)
аппарат для получения и способ получения поликристаллического кремния -  патент 2495164 (10.10.2013)
способ получения поликристаллического оптического селенида цинка -  патент 2490376 (20.08.2013)
способ получения поликристаллического материала на основе кубического нитрида бора, содержащего алмазы -  патент 2484888 (20.06.2013)
лазерная фторидная нанокерамика и способ ее получения -  патент 2484187 (10.06.2013)
способы получения сложного гидросульфатфосфата цезия состава cs5(hso4)2(h2po4)3 -  патент 2481427 (10.05.2013)
способ получения поликристаллического кремния -  патент 2475570 (20.02.2013)
способ получения поликристаллического кремния -  патент 2475451 (20.02.2013)

Класс C30B31/02 контактированием с диффузионным материалом в твердом состоянии

Класс C30B33/02 термообработка

способ формирования высококачественных моп структур с поликремниевым затвором -  патент 2524941 (10.08.2014)
способ изготовления фантазийно окрашенного оранжевого монокристаллического cvd-алмаза и полученный продукт -  патент 2497981 (10.11.2013)
способ формирования бидоменной структуры в пластинах монокристаллов -  патент 2492283 (10.09.2013)
способ получения кристаллических заготовок твердых растворов галогенидов серебра для оптических элементов -  патент 2486297 (27.06.2013)
лазерная фторидная нанокерамика и способ ее получения -  патент 2484187 (10.06.2013)
способ термической обработки алмазов -  патент 2471542 (10.01.2013)
способ термообработки полуфабрикатов абразивных инструментов на органических термореактивных связках -  патент 2467100 (20.11.2012)
способ обработки алмаза -  патент 2451774 (27.05.2012)
способ получения фторидной нанокерамики -  патент 2436877 (20.12.2011)
способ получения шероховатости на поверхности алмазных зерен -  патент 2429195 (20.09.2011)

Класс A44C27/00 Изготовление ювелирных изделий или прочих украшений

Наверх