способ окрашивания природных и синтетических ювелирных камней

Классы МПК:A44C17/00 Драгоценные камни и тп
C30B31/02 контактированием с диффузионным материалом в твердом состоянии
C30B33/02 термообработка
Автор(ы):,
Патентообладатель(и):Институт экспериментальной минералогии РАН
Приоритеты:
подача заявки:
2002-06-18
публикация патента:

Предназначено для использования в ювелирной промышленности при окрашивании бесцветных и бледно-голубых сапфиров, бесцветных топазов, кварца. Способ включает помещение ювелирных камней в тонко измельченный порошок оксида кобальта с соотношением закисной и окисной форм кобальта 1:1, смешанный с оксидом цинка в соотношении оксид кобальта к оксиду цинка как 1:(0,25-3), и последующую термообработку в окислительной атмосфере при 900-1250oС. Обеспечивается получение устойчивых окрасок природных и синтетических ювелирных камней в широком спектре цветов. 3 з.п. ф-лы.

Формула изобретения

1. Способ окрашивания природных и синтетических ювелирных камней, включающий помещение их в тонко измельченный порошок оксида кобальта и последующую термообработку в окислительной атмосфере при 900-1250oС, отличающийся тем, что в качестве оксида кобальта берут оксид с соотношением закисной и окисной форм кобальта 1: 1 и добавляют в него тонко измельченный порошок оксида цинка в соотношении оксид кобальта к оксиду цинка как 1: (0,25-3).

2. Способ по п. 1, отличающийся тем, что окрашивание сапфиров проводят при соотношении оксидов кобальта и цинка, равным 1: 2, и продолжительности термообработки в течение 2 ч при 1100oС.

3. Способ по п. 1, отличающийся тем, что окрашивание топаза проводят при соотношении оксидов кобальта и цинка, равным 1: 2, и продолжительности термообработки в течение 5 ч при 950oС.

4. Способ по п. 1, отличающийся тем, что окрашивание кварца проводят при соотношении оксидов кобальта и цинка, равным 1: 3, и продолжительности термообработки в течение 10 ч при 900oС.

Описание изобретения к патенту

Изобретение относится к способам обработки природных и синтетических ювелирных камней, в частности к способам окрашивания сапфиров от бесцветных и бледно-голубых до ярко-синих, от розовато-фиолетовых до васильково-синих, от меняющих зеленую при дневном свете окраску на розовато-красную при электрическом свете до, соответственно, голубовато-зеленой при дневном свете на синюю при электрическом свете; бесцветного топаза - в цвета от голубого до зеленовато-голубого и ярко-зеленого; кварца - в необычный голубой цвет, и может найти применение в ювелирной промышленности.

Известен способ окрашивания бесцветных кристаллов лейкосапфира в голубой цвет, согласно которому на поверхность кристалла напылением наносят кобальт в металлическом виде и осуществляют твердофазную химическую реакцию материала кристалла с нанесенным на его поверхность металлом путем термической обработки на воздухе при температуре 1100oС в течение 30 мин (Авторское свидетельство СССР 768455, кл. А 44 С 17/00, опубл. 07.10.80 г.).

Недостатком этого способа является его ограниченность по отношению к возможности окрашивания других ювелирных камней. В частности, это относится к топазу и кварцу. Топаз до температуры 960oС не взаимодействует с нанесенным на его поверхность металлическим кобальтом, а при более высокой температуре начинает разрушаться в связи с переходом в другую минеральную фазу - муллит. Кварц также не окрашивается нанесенным на его поверхность металлическим кобальтом при указанной в аналоге температуре термообработки.

Известен способ окрашивания природных и синтетических ювелирных камней, в частности топаза - в голубовато-зеленый цвет и кварца - в розовый цвет, согласно которому полированные ювелирные камни помещают в тонкоизмельченный порошок кобальта или оксида кобальта и проводят последующую термическую обработку в воздушной атмосфере при температуре 900-1250oС в течение 3-200 ч (Патент USA 5888918, кл. С 30 В 029/00, А 44 С 17/00, опубл. 30.03.99 г.).

Однако окрашенные этим способом камни имеют ограниченный спектр окрасок.

Предлагаемое изобретение решает задачу разработки технологии окрашивания большого класса природных и синтетических ювелирных камней, техническим результатом которого является получение устойчивых окрасок в широком спектре цветов.

Технический результат достигается тем, что в способе окрашивания природных и синтетических ювелирных камней, включающем помещение их в тонкоизмельченный порошок оксида кобальта и последующую термообработку в окислительной атмосфере при температурах 900-1250oС, согласно изобретению в качестве оксида кобальта берут оксид с соотношением закисной и окисной форм кобальта 1:1 и добавляют в него тонкоизмельченный порошок оксида цинка в соотношении оксид кобальта к оксиду цинка как 1:(0,25-3).

При других соотношениях закисного и окисного кобальта в оксиде кобальта сапфиры, топаз и кварц не окрашиваются. При отношении оксида кобальта к оксиду цинка менее чем 1 к 0,25 окраска визуально не отличается по сравнению с окрашиванием только в оксиде кобальта. Отношение указанных оксидов более чем 1 к 3 приводит к отравлению поверхности камней, налипанию на ней новообразованной минеральной фазы.

При обработке сапфиров лучшие результаты по их окрашиванию получают при соотношении оксидов кобальта и цинка 1:2 и продолжительности термообработки в течение 2-х часов при 1100oС.

При окрашивании топаза оптимальное соотношение указанных оксидов кобальта и цинка составляет 1:2 и продолжительности термообработки в течение 5 часов при 950oС.

При окрашивании кварца оптимальное соотношение оксидов кобальта и цинка составляет 1: 3 и продолжительности термообработки в течение 10 часов при 900oС.

Положительная роль добавки в реакционную смесь оксида цинка заключается в образовании более интенсивной и чистой окраски.

Разнообразие окрасок достигается также использованием в качестве исходного материала не только бесцветных, но и первично окрашенных камней с непопулярной или бледной окраской за счет смешения первичного их цвета с новообразованным цветом поверхности камня.

Пример 1. Ювелирную вставку из бледно-розового сапфира помещают в алундовый тигель со смесью тонкоизмельченных оксида кобальта с соотношением закисной и окисной форм кобальта 1:1 и оксида цинка. Соотношение оксида кобальта к оксиду цинка составляет при этом 1:1. Тигель помещают в электропечь, нагревают со скоростью 3oС/мин до температуры 1100oС в атмосфере воздуха, выдерживают при этой температуре в течение 2-х часов и охлаждают со скоростью 5oС/мин. В результате камень окрашивается в самый популярный для сапфиров васильково-синий цвет.

Пример 2. То же, что в примере 1, но порошок оксида кобальта содержит только его закисную (Co+2) форму. После окончания процесса камень не изменил исходную окраску.

Пример 3. То же, что в примере 1, но порошок оксида кобальта содержит только его окисную (Co+3) форму. После окончания процесса, камень не изменил исходную окраску.

Пример 4. То же, что в примере 1, но отношение оксида кобальта и оксида цинка составляет 1:0,20. В результате камень окрашивается в очень бледно-голубой цвет, малопригодный для использования в ювелирных изделиях.

Пример 5. То же, что в примере 1, но отношение оксида кобальта и оксида цинка составляет 1:3,2. В результате камень покрывается непрозрачной пленкой темно-синего цвета, теряет полировку и становится непригодным для использования в ювелирных изделиях.

Пример 6. То же, что в примере 1, но в качестве исходного материала берут ванадийсодержащий сапфир с меняющейся окраской: зеленой при дневном свете и розовато-красной - при электрическом свете. В результате получают камень также с меняющейся окраской, но других цветов: голубовато-зеленой при дневном свете и ярко-синей при электрическом свете.

Пример 7. Ювелирную полированную вставку из бесцветного топаза помещают в алундовый тигель, заполненный смесью оксидов кобальта и цинка в соотношении 1: 2 (соотношение закисной и окисной форм кобальта также равно 1:1). Тигель помещают в электропечь, нагревают со скоростью 1oС/мин до 950oС, выдерживают при этой температуре в течение 5 часов и затем охлаждают со скоростью 2oС/мин. В результате вставка окрашивается в зеленовато-голубой цвет, близкий к цвету топаза из Волынского месторождения.

Пример 8. То же, что и пример 7, но соотношение оксидов кобальта и цинка в смеси порошков составляет 1:4. В результате вставка окрашивается в интенсивный синий цвет, участками пятнистый и непрозрачный и становится непригодной для использования в ювелирных изделиях.

Пример 9. То же, что и пример 7, но соотношение оксидов кобальта и цинка в смеси порошков составляет 1:0,20. В результате вставка окрашивается в грязно-голубовато-зеленый цвет, малопригодный для использования в ювелирных изделиях.

Пример 10. Ювелирную полированную вставку, изготовленную из бесцветного кварца, помещают в тигель со смесью оксидов кобальта с отношением закисной и окисной форм кобальта 1:1 и цинка в соотношении 1:3, помещают в электропечь, нагревают со скоростью 0,5oС/мин до 900oС, выдерживают при этой температуре в течение 10 часов, затем охлаждают со скоростью 1oС/мин. В результате вставка окрашивается в интенсивный голубой цвет, близкий к окраске голубого синтетического кварца.

Пример 11. То же, что и пример 10, но процесс осуществляют при соотношении оксидов кобальта и цинка как 1:0,25. В результате вставка приобретает едва заметный розовый оттенок.

Пример 12. То же, что и пример 10, но процесс осуществляют при соотношении оксидов кобальта и цинка как 1:3,2. В результате вставка покрывается непрозрачным слоем синего цвета и не имеет никакой ювелирной ценности.

Как видно из приведенных примеров проведение процесса окрашивания в заявляемых пределах позволяет получить устойчивую окраску основных классов природных и синтетических ювелирных камней в широком спектре цветов.

Класс A44C17/00 Драгоценные камни и тп

фасетно отшлифованное композитное тело -  патент 2523996 (27.07.2014)
синтетический cvd алмаз -  патент 2516574 (20.05.2014)
способ изготовления фантазийно окрашенного оранжевого монокристаллического cvd-алмаза и полученный продукт -  патент 2497981 (10.11.2013)
способ огранки бриллиантов с калеттой -  патент 2489951 (20.08.2013)
способ огранки бриллиантов с калеттой -  патент 2489070 (10.08.2013)
способ огранки бриллиантов с калеттой -  патент 2486853 (10.07.2013)
способ термической обработки алмазов -  патент 2471542 (10.01.2013)
способ создания оптически проницаемого изображения внутри алмаза, устройство для его осуществления (варианты) и устройство для детектирования указанного изображения -  патент 2465377 (27.10.2012)
способ цветовой огранки бриллианта -  патент 2453256 (20.06.2012)
способ получения алмазов фантазийного желтого и черного цвета -  патент 2434977 (27.11.2011)

Класс C30B31/02 контактированием с диффузионным материалом в твердом состоянии

Класс C30B33/02 термообработка

способ формирования высококачественных моп структур с поликремниевым затвором -  патент 2524941 (10.08.2014)
способ изготовления фантазийно окрашенного оранжевого монокристаллического cvd-алмаза и полученный продукт -  патент 2497981 (10.11.2013)
способ формирования бидоменной структуры в пластинах монокристаллов -  патент 2492283 (10.09.2013)
способ получения кристаллических заготовок твердых растворов галогенидов серебра для оптических элементов -  патент 2486297 (27.06.2013)
лазерная фторидная нанокерамика и способ ее получения -  патент 2484187 (10.06.2013)
способ термической обработки алмазов -  патент 2471542 (10.01.2013)
способ термообработки полуфабрикатов абразивных инструментов на органических термореактивных связках -  патент 2467100 (20.11.2012)
способ обработки алмаза -  патент 2451774 (27.05.2012)
способ получения фторидной нанокерамики -  патент 2436877 (20.12.2011)
способ получения шероховатости на поверхности алмазных зерен -  патент 2429195 (20.09.2011)
Наверх