способ получения слитков

Классы МПК:B22D27/20 прочие способы воздействия на структуру зерна или строение материала; выбор компонентов для этого 
B22D7/00 Отливка слитков
Автор(ы):
Патентообладатель(и):Нижегородский сельскохозяйственный институт
Приоритеты:
подача заявки:
1992-03-04
публикация патента:

Использование: изобретение относится к металлургии и позволяет получать стальные слитки и отливки с высокими механическими свойствами и равномерной плотностью по всему объему более простым способом. Сущность изобретения: способ включает суспензионную заливку расплавленного металла в охлаждаемые металлические формы, при этом в качестве микрохолодильников используют смесь порошков железа, ферромарганца и силикокальция в количестве 0,5 - 2% от веса жидкого металла, заливаемого в формы. 1 ил., 3 табл.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4

Формула изобретения

СПОСОБ ПОЛУЧЕНИЯ СЛИТКОВ, включающий суспензионную разливку расплавленного металла в охлаждаемые металлические формы с использованием микрохолодильников в количестве 0,5 - 2% от массы жидкого металла, заливаемого в формы, в виде ферромарганца и железного порошка ПЖ-2К, отличающийся тем, что в качестве микрохолодильников дополнительно используют силикокальций при следующем содержании каждого компонента, % от массы жидкого металла, заливаемого в формы

Ферромарганец 0,08 - 0,35

Силикокальций 0,04 - 0,18

Железный порошок ПЖ-2К 0,38 - 1,47

Описание изобретения к патенту

Изобретение относится к металлургии и может быть использовано при получении отливок суспензионным литьем.

Известен способ получения слитков и отливок, включающий суспензионную разливку расплавленного металла в охлаждаемые металлические формы с использо- ванием микрохолодильников в количестве 0,5...2% от веса жидкого металла, заливаемого в формы в виде ферромарганца и железного порошка ПЖ-2К [1].

Введение ферромарганца несколько повышает качество отливок, однако не обеспечивает равномерность их свойств по всему сечению и высоте независимо от толщины стенки отливки.

Цель изобретения - повышение слитков и отливок с высокими свойствами по всему сечению и высоте независимо от толщины стенки отливки.

Способ получения слитков предусматривает суспензионную разливку расплавленного металла в охлаждаемые металли- ческие формы с использованием микрохолодильников в количестве 0,5...2% от веса жидкого металла, заливаемого в формы, в виде ферромарганца, железного порошка ПЖ-2К и силикокальция при следующем содержании каждого компонента, мас.%, от веса жидкого металла, заливаемого в формы: Ферромарганец FeMн 0,08...0,35 Силикокальций SiСа 0,04...0,18 Железный порошок ПЖ-2К 0,38...1,,47

На чертеже представлена схема устройства для осуществления предложенного способа.

Предложенный модификатор позволяет получить высокую стабильность результатов при изготовлении слитков, отличающихся высокой химической однородностью, плотностью и механическими свойствами по всему объему.

П р и м е р. Способ получения слитков реализован следующим образом.

Сталь для отливок выплавлялась в высокочастотной печи емкостью 160 кг с кислой футеровкой. Для плавки использовались отходы прокатного производства. Металл в печи перегревался до Т = 1650 - 1680оС, температура заливки составляла 1560-1580оС. Для раскисления стали в ковш под струю давался алюминий в количестве 0,1%.

Заливка проводилась из ручного ковша емкостью 80 кг в тонкостенные водоохлаждаемые металлические формы, изготовленные из 2 мм стального листа.

Бункер 1 для порошка установлен над вихревой бобышкой 2, имеющей литниковые каналы для ввода порошка и заливки металла и выход в форму 3 через металлический стояк 4. Форма установлена на холодильнике 5 в виде металлической плиты.

В бобышке 2 создаются условия для вихревого движения жидкого металла и происходит захватывание этим вихрем подаваемого сверху порошка. Металлический расходуемый стояк 4 обеспечивает спокойное заполнение формы металлом. Расплавляясь по мере подъема металла, он сохраняет преимущества заливки сверху, а также способствует лучшему усвоению порошка металлом.

Для определения влияния количества вводимых микрохолодильников на структуру и свойства литой стали были залиты отливки с вводом следующих количеств порошка:

1 - без ввода порошка;

2 - 0,5% порошка состава: 0,08% FeMn + 0,04% SiCa + 0,38% ПЖ-2К;

3 - 1,5% порошка состава: 0,25% FeMn + 0,13% SiCa + 1,1% ПЖ-2К;

4 - 2% порошка состава: 0,35% FeMn +0,18% SiCa + 1,47% ПЖ-2К.

Количество вводимого порошка выражается в % от веса жидкого металла, заливаемого в формы.

Данные химического анализа отливок приведены в табл.1.

Макроструктура полученных отливок изучалась на темплетах после травления в реактиве Кешиена.

Макроструктура отливки 1 имеет отчетливо выраженную зональность в центральной зоне, крупные дезориентированные кристаллы разделены грубыми границами.

Макроструктура отливки 2 по всему сечению состоит из мелких дезориентированных кристаллов.

Макростpуктура отливки 3 характеризуется еще большим измельчением кристаллов по всему сечению отливки.

При вводе больших количеств порошка картина существенно не меняется. При вводе 2% порошка (отливка 4) стояк не расплавляется до конца.

Все отливки с добавлением порошка отличаются высокой химической однородностью, сульфиды распределены равномерно по всему сечению отливок.

Плотность металла в центральных зонах не отличается от плотности периферийных зон и сохраняется на одном уровне по всей высоте отливки. Плотность металла полученных отливок приведена в табл.2.

Механические свойства металла полученных отливок проверялись на разрывных и ударных образцах, предварительно термообработанных по режиму - нагрев до 870оС, выдержка 2 ч, охлаждение в воздухе. Результаты приведены в табл.3.

Анализируя данные табл.3, можно сделать вывод, что применение микрохолодильников предложенного состава позволяет сохранить стабильность механических свойств по сечению и высоте, значительно возрастают пластические свойства металла в центральной зоне.

Из исследований макроструктуры и механических свойств полученных отливок видно, что лучшими свойствами обладают отливки, залитые в вводом 1,5% микрохолодильников.

При вводе микрохолодильников менее 0,5% от веса заливаемого металла их воздействие на структуру и свойства незначительно.

При вводе порошка более 2% его воздействие на структуру и свойства металла не повышается.

Использование предложенного способа по сравнению с известными позволяет получать слитки с высокими механическими свойствами и плотностью металла по всему объему толстостенных отливок.

Класс B22D27/20 прочие способы воздействия на структуру зерна или строение материала; выбор компонентов для этого 

способ изготовления толстостенных отливок из чугуна с шаровидным графитом -  патент 2510306 (27.03.2014)
модифицирующий лигатурный пруток ai-sc-zr -  патент 2497971 (10.11.2013)
способ получения высокопрочного чугуна с вермикулярным графитом внутриформенным модифицированием лигатурами системы fe-si-рзм -  патент 2497954 (10.11.2013)
добавки, уменьшающие размер зерна стали, способы изготовления и использование -  патент 2449027 (27.04.2012)
способ изготовления толстостенных отливок из чугуна с шаровидным графитом -  патент 2440214 (20.01.2012)
способ получения слитков из алюминиевых сплавов полунепрерывным литьем -  патент 2430807 (10.10.2011)
способ и устройство для получения жидко-твердой металлической композиции -  патент 2404274 (20.11.2010)
способ изготовления фасонных отливок из серого чугуна -  патент 2384630 (20.03.2010)
способ изготовления отливок рабочих колес погружных многоступенчатых центробежных насосов для добычи нефти (варианты) -  патент 2370339 (20.10.2009)
способ обработки жидкой меди наносекундными электромагнитными импульсами (нэми) для повышения ее жаро- и коррозионностойкости -  патент 2355511 (20.05.2009)

Класс B22D7/00 Отливка слитков

Наверх