ПАТЕНТНЫЙ ПОИСК В РФ
НОВЫЕ ПАТЕНТЫ, ЗАЯВКИ НА ПАТЕНТ
БИБЛИОТЕКА ПАТЕНТОВ НА ИЗОБРЕТЕНИЯ

Moisture-curable silylated polymer resin composition (патент US № 8207252)

Официальная публикация
патента US № 8207252

PDF откроется в новом окне.

Классы МПК:C08F255/02 .на полимерах олефинов, содержащих два или три атома углерода
C08F263/04 ..винилацетата
C08L51/00 Композиции привитых сополимеров, в которых привитый компонент получен реакциями с участием только ненасыщенных углерод-углеродных связей; композиции их производных
Автор(ы):Huang, Misty W. (New City, NY, US)
Nesheiwat, Jeries I. (Yonkers, NY, US)
Патентообладатель(и):Momentive Performance Materials Inc. (Albany, NY, US)
Приоритеты:
подача заявки
07.03.2007
публикация патента
26.06.2012

РЕФЕРАТ (Abstract)

The present invention provides a moisture-curable composition containing silylated polyurethane prepolymer and silane acrylate polymer. The composition is flowable at room temperatures, and upon curing forms high modulus resins for use in adhesives, coatings and sealants for automotive and industrial applications.

ФОРМУЛА ИЗОБРЕТЕНИЯ (CLAIMS)

What is claimed is:

1. A moisture-curable silylated polymer resin composition comprising: a) non-acrylic polymer containing at least one hydrolysable silyl group having the general Formula (1): embedded image wherein: R1 is independently a monovalent or polyvalent organic polymer fragment having a number average molecular weight of from about 500 to about 25,000 grams/mole; R2 is independently a divalent hydrocarbyl group containing from 1 to 12 carbon atoms selected from the group consisting of divalent alkylene, alkenylene, arenylene, arylene and aralkylene, and, optionally, contains at least one heteroatom selected from the group consisting of oxygen, nitrogen and sulfur; A1 is independently selected from divalent oxygen (—O—), sulfur (—S—) or substituted nitrogen of the structure (—)2NR3, wherein R3 is hydrogen, alkyl, alkenyl, arenyl, aryl, aralkyl or —R2SiX1X2X3 group, wherein each R3, other than hydrogen, contains from 1 to 18 carbon atoms, and with the provisos that when A1 is oxygen or sulfur, then A2 is (—)2NR3 and when a is 0, then A1 is oxygen; A2 is independently selected from divalent oxygen (—O—), sulfur (—S—) or substituted nitrogen of the structure (—)2NR3, wherein R3 is hydrogen, alkyl, alkenyl, arenyl, aryl, aralkyl or —R2SiX1X2X3 group, wherein each R3, other than hydrogen, contains from 1 to 18 carbon atoms, and with the provisos that when A2 is oxygen or sulfur, then A1 is (—)2NR3; X1 is independently selected from the group consisting of RO—, RC(═O)O—, R2C═NO—, and R2NO— wherein each R is independently selected from the group consisting of hydrogen, alkyl, alkenyl, arenyl, aryl, and aralkyl groups, wherein each R, other than hydrogen, contains from 1 to 18 carbon atoms, and, optionally, contains at least one oxygen or sulfur atom; X2 and X3 is independently selected from the group consisting of RO—, RC(═O)O—, R2C═NO—, R2NO— and R wherein each R is independently selected from the group consisting of hydrogen, alkyl, alkenyl, arenyl, aryl, and aralkyl groups, wherein each R, other than hydrogen, contains from 1 to 18 carbon atoms and, optionally, contains at least one oxygen or sulfur atom; and, each occurrence of subscripts a and b is independently an integer wherein a is 0 or 1 and b is 1 to 6; b) silylated acrylate polymer having the general Formula (10): embedded image wherein: each occurrence of R6 is independently a hydrogen or monovalent hydrocarbyl group containing from about 1 to 12 carbon atoms selected from the group consisting of alkyl, arenyl, aryl and aralkyl, and, optionally, contains at least one heteroatom selected from the group consisting of oxygen, nitrogen and sulfur; each occurrence of R7 is independently a hydrogen or monovalent hydrocarbyl group containing from about 1 to 12 carbon atoms selected from the group consisting of alkyl, arenyl, aryl and aralkyl, and, optionally, contains at least one heteroatom selected from the group consisting of oxygen, nitrogen and sulfur; each occurrence of R8 is a covalent bond or divalent hydrocarbyl containing from about 1 to 12 carbon atoms selected from the group consisting of an alkylene, arenylene, arylene and aralkylene; each occurrence of X5 is independently an organic functional group selected from the group consisting of —C(═O)O—, —CN, —OH, Cl—, Br—, I— and —C6H5; each occurrence of X6 is independently a monovalent hydrocarbyl group containing an ester linking group, —C(═O)O—R9, wherein each occurrence of R9 is independently a monovalent hydrocarbyl group containing from about 1 to 12 carbon atoms selected from the group consisting of alkyl, arenyl, aryl and aralkyl, and, optionally, contains at least one heteroatom selected from the group consisting of oxygen, nitrogen and; each occurrence of X7 is independently a monovalent hydrocarbyl group containing a hydroxyl and ester linking group, —C(═O)O—R10—OH, wherein each occurrence of R10 is independently a divalent hydrocarbylene containing from about 1 to 12 carbon atoms selected from the group consisting of alkylene, arenylene, arylene and aralkylene, and, optionally, contains at least one heteroatom selected from the group consisting of oxygen, nitrogen and sulfur; each occurrence of X8 is independently a monovalent hydrocarbyl group containing a hydrolysable silyl group and a urethane linking group and having the general Formula (11): embedded image wherein R2, X1, X2 and X3 have the aforestated meanings; R11 is a divalent hydrocarbylene containing from 1 to 18 carbon atoms selected from the group consisting of alkylene, arenylene, arylene, and aralkylene and optionally, contains at least one heteroatom selected from the group consisting of oxygen, nitrogen and sulfur; A1 is oxygen; A3 and A4 are —NH—, each A2 is divalent oxygen, sulfur or substituted nitrogen of the structure (—)2NR3, wherein R3 is hydrogen, alkyl, alkenyl, aryl aralkyl or —R2SiX1X2X3, wherein each R3, other than hydrogen, contains from 1 to 18 carbon atoms, and with the proviso that when c is 0, A2 is —NH—; each occurrence of X9 is independently a monovalent hydrocarbyl group containing a hydrolysable silyl group, an urethane group and an ester linking group and having the general Formula (12): embedded image wherein R2, R11, X1, X2 and X3 have the aforestated meanings; each occurrence of R10 is a divalent hydrocarbyl group containing from about 1 to 12 carbon atoms selected from the group consisting of a alkylene, arenylene, arylene and aralkylene, and, optionally, contains at least one heteroatom selected from the group consisting of oxygen, nitrogen and sulfur; A1 is oxygen; A3 and A4 are —NH—; each A2 is divalent oxygen, sulfur or substituted nitrogen of the structure (—)2NR3, wherein R3 is hydrogen, alkyl, alkenyl, aryl aralkyl or —R2SiX1X2X3, wherein each R3, other than hydrogen, contains from 1 to 18 carbon atoms, and with the proviso that when d is 0, A2 is —NH—; and each occurrence of c, d, m, n, o, p, q and r is an integer wherein c is 0 or 1; d is 0 or 1, m is 0 to about 500, n is 0 to about 500, o is 0 to about 500 and p is 0 to about 500, q is 0 to about 500 and r is 0 to about 500, with the proviso that the sum of q and r is greater than 1, q is less than or equal to n, and r is less than or equal to p, wherein the silylated acrylate polymer (b) is compatible with component (a) to form liquid resins at room temperature; and optionally, c) hydrolysable silicon compound.

2. The composition of claim 1 wherein the non-acrylic polymer, component (a), is prepared by at least one of the following: i) reacting at least one polyol with at least one polyisocyanate to form an isocyanate-terminated prepolymer and reacting said prepolymer with at least one hydrolysable silane containing at least one active hydrogen functional group; ii) reacting at least one polyol with at least one polyisocyanate to form an isocyanate-terminated prepolymer and reacting said prepolymer with at least one unsaturated compound containing at least one active hydrogen functional group and reacting the compound formed therein with at least one hydrolysable silane containing at least one Si—H group; iii) reacting at least one polyol with at least one hydrolysable silane containing at least one isocyanate functional group; and iv) reacting at least one polyol with at least one ethylenically unsaturated halo-compound and reacting the compound formed therein with at least one hydrolysable silane containing at least one Si—H group.

3. The composition of claim 2 wherein the isocyanate-terminated prepolymer has the general Formula (2):
R1—[—(N═C═O)a]b (2) wherein R1 is a monovalent or polyvalent organic polymer fragment having a number average molecular weight of from about 500 to about 25,000 grams/mole, b is 1 to 6 and a is 1, with the proviso that R1 polymer fragment contains a urethane group as a result of the reaction of the polyol with an isocyanate group.

4. The composition of claim 2 wherein the hydrolysable silane containing at least one active hydrogen functional group has the general Formula (3):
H—Y1—R2—Si1X2X3 (3) wherein R2 is a divalent hydrocarbyl group containing from 1 to 12 carbon atoms selected from the group consisting of divalent alkylene, alkenylene, arenylene, arylene and aralkylene, and, optionally, contains at least one heteroatom selected from the group consisting of oxygen, nitrogen and sulfur; X1 is selected from the group consisting of RO—, RC(═O)O—, R2C═NO—, and R2NO— wherein each R is independently selected from the group consisting of hydrogen, alkyl, alkenyl, arenyl, aryl, and aralkyl, wherein each R, other than hydrogen, contains from 1 to 18 carbon atoms and, optionally, contains at least one oxygen or sulfur atom; X2 and X3 are selected from the group consisting of RO—, RC(═O)O—, R2C═NO—, R2NO— and R wherein each R is independently selected from the group consisting of hydrogen, alkyl, alkenyl, arenyl, aryl, and aralkyl, wherein each R, other than hydrogen, contains from 1 to 18 carbon atoms and, optionally, contains at least one oxygen or sulfur atom; and Y1 is selected from the group consisting of oxygen (—O—), sulfur (—S—), (—)2NR3, wherein R3 is hydrogen, alkyl, alkenyl, arenyl, aralkyl or —R2SiX1X2X3 group, wherein each R3, other than hydrogen, contains from 1 to 18 carbon atoms, —NR3(C═O)NR3—, —NR3(C═O)O— and —NR3(C═O)S—.

5. The composition of claim 2 wherein the hydrolysable silane containing at least one Si—H group has the general Formula (6);
HSiX1X2X3 (6) wherein X1 is selected from the group consisting of RO—, RC(═O)O—, R2C═NO—, and R2NO— wherein each R is independently selected from the group consisting of hydrogen, alkyl, alkenyl, arenyl, aryl, and aralkyl groups, wherein each R, other than hydrogen, contains from 1 to 18 carbon atoms and, optionally, contains at least one oxygen or sulfur atom; and, X2 and X3 are selected from the group consisting of RO—, RC(═O)O—, R2C═NO—, R2NO— and R, wherein each R is independently selected from the group consisting of hydrogen, alkyl, alkenyl, arenyl, aryl, and aralkyl groups, wherein each R, other than hydrogen, contains from 1 to 18 carbon atoms and, optionally, contains at least one oxygen or sulfur atom.

6. The composition of claim 2 wherein the hydrolysable silane containing at least one isocyanate functional group has the general Formula (7):
OCN—R2—SiX1X2X3 (7) wherein R2 is independently a divalent hydrocarbyl group containing from 1 to 12 carbon atoms selected from the group consisting of divalent alkylene, alkenylene, arenylene, arylene and aralkylene, and, optionally, contains at least one heteroatom selected from the group consisting of oxygen, nitrogen and sulfur; X1 is independently selected from the group consisting of RO—, RC(═O)O—, R2C═NO—, and R2NO— wherein each R is independently selected from the group consisting of hydrogen, alkyl, alkenyl, arenyl, aryl, and aralkyl groups, wherein each R, other than hydrogen, contains from 1 to 18 carbon atoms and, optionally, contains at least one oxygen or sulfur atom; and, X2 and X3 is independently selected from the group consisting of RO—, RC(═O)O—, R2C═NO—, R2NO— and R wherein each R is independently selected from the group consisting of hydrogen, alkyl, alkenyl, arenyl, aryl, and aralkyl groups, wherein each R, other than hydrogen, contains from 1 to 18 carbon atoms and, optionally, contains at least one oxygen or sulfur atom.

7. The composition of claim 2 wherein the unsaturated compound containing at least one active hydrogen functional group has the general Formula (4): embedded image wherein: R4 is a divalent hydrocarbyl group containing from 1 to 10 carbon atoms selected from the group consisting of divalent alkylene, alkenylene, arenylene, arylene and aralkylene, and, optionally, containing at least one oxygen or nitrogen; R5 is hydrogen or a monovalent hydrocarbyl containing from 1 to 9 carbon atoms selected from the group consisting of alkyl, arenyl, aryl and aralkyl, with the proviso that the sum of carbon atoms in R4 and R5 is less than or equal to 10; and, Y2 is selected from the group consisting of oxygen (—O—), (—)2NR3, —NR3(C═O)NR3— and —NR3(C═O)O—, wherein R3 is hydrogen, alkyl, alkenyl, arenyl, aralkyl or —R2SiX1X2X3 group, wherein each R3, other than hydrogen, contains from 1 to 18 carbon atoms.

8. The composition of claim 3 wherein the ethylenically unsaturated halo compound has the general Formula (8): embedded image wherein: R4 is a divalent hydrocarbyl group containing from 1 to 10 carbon atoms selected from the group consisting of divalent alkylene, alkenylene, arenylene, arylene and aralkylene, and, optionally, contains at least one oxygen or sulfur; R5 is independently hydrogen or a monovalent hydrocarbyl containing from 1 to 9 carbon atoms selected from the group consisting of alkyl, arenyl, aryl and aralkyl, with the proviso that the sum of carbon atoms in R4 and R5 is less than or equal to 10; and, Y3 is at least one halo atom selected from the group consisting of Cl—, Br— and I—.

9. The composition of claim 1 wherein the silylated acrylic polymer, component (b), is prepared by at least one of the following: a) reacting at least one hydroxyl containing acrylate polymer with at least one hydrolysable silane containing at least one isocyanate functional group; and, b) reacting at least one hydroxyl containing acrylate polymer with at least one polyisocyanate and reacting the compound formed therein with at least one hydrolysable silane containing at least one active hydrogen functional group.

10. The composition of claim 9 wherein hydroxyl containing acrylate polymer has the general Formula (13): embedded image wherein: R6 is independently a hydrogen or monovalent hydrocarbyl group containing from 1 to 12 carbon atoms selected from the group consisting of alkyl, arenyl, aryl and aralkyl, and, optionally, contains at least one heteroatom selected from the group consisting of oxygen, nitrogen and sulfur; R7 is independently a hydrogen or monovalent hydrocarbyl group containing from 1 to 12 carbon atoms selected from the group consisting of alkyl, arenyl, aryl and aralkyl, and, optionally, contains at least one heteroatom selected from the group consisting of oxygen, nitrogen and sulfur; R8 is a covalent bond or divalent hydrocarbyl group containing from 1 to 12 carbon atoms selected from the group consisting of an alkylene, arenylene, arylene and aralkylene; R9 is independently a monovalent hydrocarbyl group containing from 1 to 12 carbon atoms selected from the group consisting of alkyl, arenyl, aryl and aralkyl, and, optionally, contains at least one heteroatom selected from the group consisting of oxygen, nitrogen and sulfur; R10 is a divalent hydrocarbyl group containing from 1 to 12 carbon atoms selected from the group consisting of a alkylene, arenylene, arylene and aralkylene, and, optionally, contains at least one heteroatom selected from the group consisting of oxygen, nitrogen and sulfur; X5 is independently an organic functional group selected from the group comprising —C(═O)O—, —CN, —OH, —Cl, —Br, —I, and —C6H5; and, each occurrence of m, n, o and p is an integer wherein m is 0 to about 500, n is 0 to about 500, o is 0 to about 500 and p is 0 to about 500, with the proviso that the sum of o and p is greater than 1.

11. The composition of claim 10 wherein the hydroxyl containing acrylic polymer is prepared from at least one monomer-selected from the group consisting of 2-hydroxyethyl acrylate, 3-hydroxypropyl acrylate, 6-hydroxy-2-ethylhexyl acrylate, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, phenyl acrylate, 2-hydroxyethyl methacrylate, 3-hydroxypropyl methacrylate, 6-hydroxy-2-ethylhexyl methacrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, phenyl methacrylate, acrylic acid, methacrylic acid, 2-propenoic acid, 2-butenoic acid, 3-butenoic acid, 4-vinylbenzoic acid, styrene, 4-vinyltoluene, acrylonitrile, vinyl acetate, vinyl propanoate, vinyl benzoate, allyl alcohol, methallyl alcohol, allyl chloride and methallyl chloride.

12. The composition of claim 9 wherein the hydrolysable silane containing at least one isocyanate functional group has the general Formula (7):
OCN—R2—SiX1X2X3 (7) wherein R2 is independently a divalent hydrocarbyl group containing from 1 to 12 carbon atoms selected from the group consisting of divalent alkylene, alkenylene, arenylene, arylene and aralkylene, and, optionally, contains at least one heteroatom selected from the group consisting of oxygen, nitrogen and sulfur; X1 is independently selected from the group consisting of RO—, RC(═O)O—, R2C═NO—, and R2NO— wherein each R is independently selected from the group consisting of hydrogen, alkyl, alkenyl, arenyl, aryl, and aralkyl groups, wherein each R, other than hydrogen, contains from 1 to 18 carbon atoms and, optionally, contains at least one oxygen or sulfur atom; and, X2 and X3 is independently selected from the group consisting of RO—, RC(═O)O—, R2C═NO—, R2NO— and R wherein each R is independently selected from the group consisting of hydrogen, alkyl, alkenyl, arenyl, aryl, and aralkyl groups, wherein each R, other than hydrogen, contains from 1 to 18 carbon atoms and, optionally, contains at least one oxygen or sulfur atom.

13. The composition of claim 9 wherein the polyisocyanate is at least one selected from the group consisting of 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 4,4′-diphenylmethane diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, diphenylmethane diisocyanates and isophorone diisocyanate.

14. The composition of claim 9 wherein the hydrolysable silane containing at least one active hydrogen functional group has the general Formula (3):
H—Y1—R2—SiX1X2X3 (3) wherein, R2 is a divalent hydrocarbyl group containing from 1 to 12 carbon atoms selected from the group consisting of divalent alkylene, alkenylene, arenylene, arylene and aralkylene, and, optionally, contains at least one heteroatom selected from the group consisting of oxygen, nitrogen and sulfur; X1 is selected from the group consisting of RO—, RC(═O)O—, R2C═NO— and R2NO—, wherein each R is independently selected from the group consisting of hydrogen, alkyl, alkenyl, arenyl, aryl, and aralkyl groups, wherein each R, other than hydrogen, contains from 1 to 18 carbon atoms and, optionally, contains at least one oxygen or sulfur atom; X2 and X3 are selected from the group consisting of RO—, RC(═O)O—, R2C═NO—, R2NO— and R, wherein each R is independently selected from the group consisting of hydrogen, alkyl, alkenyl, arenyl, aryl, and aralkyl groups, wherein each R, other than hydrogen, contains from 1 to 18 carbon atoms and, optionally, contains at least one oxygen or sulfur atom; and Y1 is selected from the group consisting of oxygen (—O—), sulfur (—S—), (—)2NR3, —NR3(C═O)NR3—, —NR3(C═O)O— and —NR3(C═O)S— wherein R3 is hydrogen, alkyl, alkenyl, arenyl, aralkyl or —R2SiX1X2X3 group, wherein each R3, other than hydrogen, contains from 1 to 18 carbon atoms.

15. The composition of claim 1 wherein R7 is hydrogen or methyl; R8 is a covalent bond; R9 is an alkyl or aryl group from 1 to about 10 carbon atoms; R10 is an alkylene group containing from 1 to about 12 carbon atoms; X5 is —C6H5, —CN, —Cl or —C(═O)O—; m is from about 10 to about 100; n is 0 to about 300; o is 0 to about 300; and p is 0 to about 300; q is 0 to 200; r is 0 to 200, with the proviso that the sum of q and r is equal to or greater than 1.

16. The composition of claim 1 wherein the composition contains at least one hydrolysable silicon compound, component (c).

17. The composition of claim 16, wherein the hydrolysable silicon compound, component (c), is at least one selected from the group consisting of acid or base condensed tetraalkoxysilane, wherein the alkoxy group contains from 1 to about 6 carbon atoms; acid or base condensed hydrocarbyltrialkoxysilane, wherein the hydrocarbyl group contains from 1 to about 8 carbon atoms and the alkoxy group contains from 1 to about 6 carbon atoms; acid or base condensed mixture of tetralkoxysilanes and hydrocarbyltrialkoxysilanes and their condensation products.

18. The composition of claim 1 wherein component (a) is present in an amount that ranges from about 5 to about 95 weight percent and component (b) is present in an amount that ranges from about 5 to about 95 weight percent of the total composition.

19. The composition of claim 1 wherein component (a) is present in an amount that ranges from about 50 to about 85 weight percent and component (b) is present in an amount that ranges from about 15 to about 50 weight percent of the total composition.

20. The composition of claim 1 wherein component (a) has glass transition temperature of not more than about −20° C.

21. The composition of claim 1 wherein component (b) has a glass transition temperature of at least about 1° C.

22. The composition of claim 1 wherein component (b) has a glass transition temperature of at least about 10° C.

23. The composition of claim 1 wherein component (a) contains at least one methoxysilyl group and component (b) contains at least one ethoxysilyl group.

24. The composition of claim 1 wherein the silylated acrylate polymer (b) further comprises solvent up to about 40 weight percent.

25. The composition of claim 1 wherein silylated acrylate polymer (b) further comprises solvent up to about 20 weight percent.

26. The composition of claim 1 further comprising a solvent selected from the group consisting of n-butyl acetate, methyl n-amyl ketone, PM acetate, xylene, ethyl benzene, aromatic 100 (HiSo110), toluene, aliphatic solvent 90 and mixtures thereof.

27. A process for making moisture-curable silylated polymer resin of claim 1 comprising: (i) blending non-acrylic polymer containing at least one hydrolysable silyl group (a) with a hydroxyl acrylate polymer of Formula (13): embedded image wherein R6 is independently a hydrogen or monovalent hydrocarbyl group containing from 1 to 12 carbon atoms selected from the group consisting of alkyl, arenyl, aryl and aralkyl, and, optionally, contains at least one heteroatom selected from the group consisting of oxygen, nitrogen and sulfur; R7 is independently a hydrogen or monovalent hydrocarbyl group containing from 1 to 12 carbon atoms selected from the group consisting of alkyl, arenyl, aryl and aralkyl, and, optionally, contains at least one heteroatom selected from the group consisting of oxygen, nitrogen and sulfur; R8 is a covalent bond or divalent hydrocarbyl group containing from 1 to 12 carbon atoms selected from the group consisting of an alkylene, arenylene, arylene and aralkylene; R9 is independently a monovalent hydrocarbyl group containing from 1 to 12 carbon atoms selected from the group consisting of alkyl, arenyl, aryl and aralkyl, and, optionally, contains at least one heteroatom selected from the group consisting of oxygen, nitrogen and sulfur; R10 is a divalent hydrocarbyl group containing from 1 to 12 carbon atoms selected from the group consisting of a alkylene, arenylene, arylene and aralkylene, and, optionally, contains at least one heteroatom selected from the group consisting of oxygen, nitrogen and sulfur; X5 is independently an organic functional group selected from the group consisting of carboxylate (—C(═O)O—), cyano (—CN), hydroxyl (—OH), —Cl, —Br, —I, and phenyl (C6H5); and, each occurrence of m, n, o and p is an integer wherein m is 0 to about 500, n is 0 to about 500, o is 0 to about 500 and p is 0 to about 500, with the proviso that the sum of o and p is greater than 1; and, (ii) reacting the composition formed in step (i) with at least one hydrolysable silane containing at least one isocyanate functional group selected from the group consisting of 3-isocyanatopropyltrimethoxysilane, 3-isocyanatoisopropyltrimethoxysilane, 4-isocyanatobutyltrimethoxysilane, 2-isocyanato-1,1-dimethylethyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-isocyanatoisopropyltriethoxysilane, 4-isocyanatobutyltriethoxysilane, 2-isocyanato-1,1-dimethylethyltriethoxysilane, 2-thiocyanatoethyltrimethoxysilane, 3-thiocyanatopropyltriethoxysilane, 3-isocyanatopropylmethyldimethoxysilane, 3-isocyanatoisopropyldimethylmethoxysilane, 4-isocyanatobutylphenyldimethoxysilane, 2-(4-isocyanatophenybethylmethyldimethoxysilane and wherein the ratio of NCO to —OH is specifically from about 0.5 to about 1.1, to provide for the moisture-curable silylated polymer resin.

28. A process for making moisture-curable silylated polymer resin of claim 1 comprising: a) blending at least one isocyanate-terminated prepolymer having the general Formula (2)
R1—[—(N═C═O)a]b (2) wherein R1 is a monovalent or polyvalent organic polymer fragment, a is 1 and b is 1 to 6, with the proviso that R1 polymer fragment contains a urethane group, with the compound formed by reacting a hydroxyl containing acrylate polymer of Formula (13): embedded image wherein R6 is independently a hydrogen or monovalent hydrocarbyl group containing from 1 to 12 carbon atoms selected from the group consisting of alkyl, arenyl, aryl and aralkyl, and, optionally, contains at least one heteroatom selected from the group consisting of oxygen, nitrogen and sulfur; R7 is independently a hydrogen or monovalent hydrocarbyl group containing from 1 to 12 carbon atoms selected from the group consisting of alkyl, arenyl, aryl and aralkyl, and, optionally, contains at least one heteroatom selected from the group consisting of oxygen, nitrogen and sulfur; R8 is a covalent bond or divalent hydrocarbyl group containing from 1 to 12 carbon atoms selected from the group consisting of an alkylene, arenylene, arylene and aralkylene; R9 is independently a monovalent hydrocarbyl group containing from 1 to 12 carbon atoms selected from the group consisting of alkyl, arenyl, aryl and aralkyl, and, optionally, contains at least one heteroatom selected from the group consisting of oxygen, nitrogen and sulfur; R10 is a divalent hydrocarbyl group containing from 1 to 12 carbon atoms selected from the group consisting of a alkylene, arenylene, arylene and aralkylene, and, optionally, contains at least one heteroatom selected from the group consisting of oxygen, nitrogen and sulfur; X5 is independently an organic functional group selected from the group consisting of carboxylate (—C(═O)O—), cyano (—CN), hydroxyl (—OH), —Cl, —Br, —I, and phenyl (C6H5); and, each occurrence of m, n, o and p is an integer wherein m is 0 to about 500, n is 0 to about 500, o is 0 to about 500 and p is 0 to about 500, with the proviso that the sum of o and p is greater than 1, with an isocyanatosilane selected from the group consisting of 3-isocyanatopropyltrimethoxysilane, 3-isocyanatoisopropyltrimethoxysilane, 4-isocyanatobutyltrimethoxysilane, 2-isocyanato-1,1-dimethylethyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-isocyanatoisopropyltriethoxysilane, 4-isocyanatobutyltriethoxysilane, 2-isocyanato-1,1-dimethylethyltriethoxysilane, 2-thiocyanatoethyltrimethoxysilane, 3-thiocyanatopropyltriethoxysilane, 3-isocyanatopropylmethyldimethoxysilane, 3-isocyanatoisopropyldimethylmethoxysilane, 4-isocyanatobutylphenyldimethoxysilane, 2-(4-isocyanatophenyl)ethylmethyldimethoxysilane and wherein the ratio of —NCO to —OH is from about 0.5 to about 1.1; and, b) reacting the composition formed in (a) with at least one hydrolysable silane containing at least one active hydrogen functional group having Formula (3):
H—Y1—R2—SiX1X2X3 (3) wherein: R2 is independently a divalent hydrocarbyl group containing from 1 to 12 carbon atoms selected from the group consisting of divalent alkylene, alkenylene, arenylene, arylene and aralkylene, and, optionally, contains at least one heteroatom selected from the group consisting of oxygen, nitrogen and sulfur; X1 is independently selected from the group consisting of RO—, RC(═O)O—, R2C═NO—, and R2NO— wherein each R is independently selected from the group consisting of hydrogen, alkyl, alkenyl, arenyl, aryl, and aralkyl groups, wherein each R, other than hydrogen, contains from 1 to 18 carbon atoms and, optionally, contains at least one oxygen or sulfur atom; and, X2 and X3 is independently selected from the group consisting of RO—, RC(═O)O—, R2C═NO—, R2NO— and R wherein each R is independently selected from the group consisting of hydrogen, alkyl, alkenyl, arenyl, aryl, and aralkyl groups, wherein each R, other than hydrogen, contains from 1 to 18 carbon atoms and, optionally, contains at least one oxygen or sulfur atom, each occurrence of Y1 is independently selected from the group consisting of oxygen (—O—), sulfur (—S—), (—)2NR3, —NR3(C═O)NR3—, —NR3(C═O)O— and —NR3(C═O)S—, wherein R3 is hydrogen, alkyl, alkenyl, arenyl, aralkyl or —R2SiX1X2X3 group, and each R3, other than hydrogen, contains from 1 to 18 carbon atoms, to provide for the moisture-curable silylated polymer resin composition.

29. The composition obtained by curing the moisture-curable silylated polymer resin composition of claim 1.

30. The composition obtained by curing the moisture-curable silylated polymer resin obtained by the process of composition claim 27.

31. The composition obtained by curing the moisture-curable silylated polymer resin obtained by the process of composition claim 28.

32. An adhesive comprising the composition of claim 1.

33. A sealant comprising the composition of claim 1.

34. A coating comprising the composition of claim 1.


Предыдущий   патент US   Следующий

Наверх