Полупроводниковые лазеры – H01S 5/00

МПКРаздел HH01H01SH01S 5/00
Раздел H ЭЛЕКТРИЧЕСТВО
H01 Основные элементы электрического оборудования
H01S Устройства со стимулированным излучением
H01S 5/00 Полупроводниковые лазеры

H01S 5/02 .конструктивные детали или компоненты, не влияющие на работу лазера
H01S 5/022 ..монтажные, сборочные элементы; корпуса
H01S 5/024 ..охлаждающие устройства
H01S 5/026 ..монолитно встроенные компоненты, например волноводы, контролирующие фотодетекторы, возбудители
стабилизация выходных параметров  5/06; соединение световодов с опто-электронными элементами  G 02B 6/42; устройства, состоящие из нескольких полупроводниковых или прочих твердотельных компонентов, сформированных внутри общей подложки или на ней, и специально предназначенные для светового излучения  H 01L 27/15
H01S 5/028 ..покрытия
H01S 5/04 .способы и устройства для возбуждения, например накачка
 5/06 имеет преимущество
H01S 5/042 ..электрическое возбуждение
H01S 5/06 .устройства для управления выходными параметрами лазера, например путем воздействия на активную среду
передающие системы, использующие световые волны  H 04B 10/00
H01S 5/062 ..изменением потенциала, приложенного к электродам
 5/065 имеет преимущество
H01S 5/0625 ...в многосекционных лазерах
H01S 5/065 ..синхронизация мод; подавление мод; селекция мод
H01S 5/068 ..стабилизация выходных параметров лазера
 5/0625 имеет преимущество
H01S 5/0683 ...посредством мониторинга оптических выходных параметров
H01S 5/0687 ....стабилизация частоты лазера
H01S 5/10 .конструкция или форма оптического резонатора
H01S 5/12 ..резонаторы, с периодической структурой, например в лазерах с распределенной обратной связью (DFB-лазеры)
 5/18 имеет преимущество
H01S 5/125 ...лазеры с распределенным отражателем Брэгга (DBR-лазеры)
H01S 5/14 ..лазеры с внешним объемным резонатором
 5/18 имеет преимущество; синхронизация  5/065
H01S 5/16 ..лазеры типа волноводного окна, т.е. с областью из непоглощающего материала между активной зоной и отражающей поверхностью
 5/14 имеет преимущество
H01S 5/18 ..лазеры с лучеиспускающей поверхностью (SE-лазеры)
H01S 5/183 ...с вертикальным резонатором (VCSE-лазеры)
H01S 5/187 ...с использованием распределенного отражателя Брэгга (SE-DBR-лазеры)
 5/183 имеет преимущество
H01S 5/20 .структура или форма полупроводниковой подложки для направления оптической волны
H01S 5/22 ..с чередующимися гребнями и бороздками
H01S 5/223 ...утопленная бороздчатая структура
 5/227 имеет преимущество
H01S 5/227 ...утопленная мезаструктура
H01S 5/24 ..в виде канавок, например V-образных
H01S 5/30 .структура или форма активной зоны; материалы, используемые для активной зоны
H01S 5/32 ..с PN переходами, например гетероструктуры или двойные гетероструктуры
 5/34,  5/36 имеют преимущество
H01S 5/323 ...в соединениях типа AIIIBV, например AlGaAs-лазер
H01S 5/327 ...с соединениями AIIBVI, например ZnCdSe-лазер
H01S 5/34 ..содержащие структуры с потенциальной квантовой ямой или сверхрешетчатые структуры, например лазеры с одной потенциальной ямой (SQW-лазеры), лазеры с несколькими потенциальными ямами (MQW-лазеры), ступенчатые гетероструктурные лазеры с раздельным плавным изменением показателя преломления (GRINSCH-лазеры)
 5/36 имеет преимущество
H01S 5/343 ...в соединениях AIIIBV, например AlGaAs-лазер
H01S 5/347 ...в соединениях типа AIIBVI, например ZnCdSe-лазер
H01S 5/36 ..содержащие органические материалы
жидкостные лазеры с использованием органического красителя  3/213
H01S 5/40 .размещение двух или более полупроводниковых лазеров, не предусмотренное в подгруппах  5/02
 5/50 имеет преимущество
H01S 5/42 ..решетки лазеров с лучеиспускающей поверхностью
H01S 5/50 .конструкции усилителей, не предусмотренные в группах  5/02
как ретрансляторы в передающих системах  H 04B 10/17

Патенты в данной категории

ПОЛУПРОВОДНИКОВЫЙ ЛАЗЕР (ВАРИАНТЫ)

Предложенная группа изобретений относится к полупроводниковым лазерам. Полупроводниковый лазер включает гетероструктуру, выращенную на подложке, содержащей буферный слой, покровный слой, контактный слой, активную область с активной квантовой ямой либо с активными квантовыми ямами, выполненную в p-n- и/или в p-i-n- переходе, сформированном в окружающих ее слоях полупроводника, с показателем преломления активной квантовой ямы либо с показателями преломления активных квантовых ям, превышающих показатели преломления окружающих слоев полупроводника. Волновод сформирован всеми слоями гетероструктуры за счет разности показателей преломления активной квантовой ямы либо активных квантовых ям и окружающих слоев полупроводника, при этом подложка легирована сильнее, чем область с квантовой ямой или чем область с квантовыми ямами, степень легирования подложки составляет 1018-3*1018 см -3, буферный слой выполнен с той же степенью легирования, что и подложка, покровный слой легирован слабо, слабее, чем подложка, степень легирования покровного слоя составляет 1017 -5*1017 см-3, контактный слой легирован сильно, степень легирования контактного слоя составляет 10 19-5*1019 см-3. Технический результат заключается в снижении поперечной расходимости излучения, уменьшении внутренних оптических потерь, удешевлении и упрощении производства. 2 н. и 2 з.п. ф-лы, 5 ил.

2529450
выдан:
опубликован: 27.09.2014
ДРАЙВЕР ПОЛУПРОВОДНИКОВОГО ЛАЗЕРА

Изобретение относится к области оптоэлектроники. Драйвер полупроводникового лазера 1 выполнен с возможностью подключения к его выходу оптического волокна 2, и содержит регулируемый источник 3 тока, блок 4 управления, датчик 5 тока и датчик 6 мощности излучения лазера 1. При этом выход датчика 6 мощности 1 подключен к первому входу блока 4 управления, к оптическому входу датчика 6 мощности 1 подключен первый оптический выход лазера 1, ко второму оптическому выходу лазера 1 подключено оптическое волокно 2, выход регулируемого источника 3 тока подключен к электрическому входу лазера 1 и ко входу датчика 5 тока, выход которого соединен со вторым входом блока 4 управления, выход которого соединен со входом регулируемого источника 3 тока. Дополнительно содержится инфракрасный фотодиод 7, спектр чувствительности которого не перекрывает длину волны излучения лазера 1, усилитель-преобразователь 8 тока инфракрасного фотодиода 7 и блок 9 обработки сигнала и передачи данных. При этом оптическое волокно 2 выполнено с ответвлением 10, выход которого подключен ко входу инфракрасного фотодиода 7, выход которого соединен со входом усилителя-преобразователя 8 тока инфракрасного фотодиода 7, выход которого соединен со входом блока 9 обработки сигнала и передачи данных и третьим входом блока 4 управления. Технический результат заключается в обеспечении возможности контроля и поддержания заданного уровня температуры торца рабочего оптического волокна. 1 ил.

2529053
выдан:
опубликован: 27.09.2014
ЛАЗЕРНАЯ ЭЛЕКТРОННО-ЛУЧЕВАЯ ТРУБКА

Изобретение относится к квантовой электронике и электронной технике и может быть использовано в приборах со сканирующим световым лучом. Лазерная электронно-лучевая трубка выполнена в виде вакуумируемой колбы с выходным оптическим окном и имеет электронно-оптическую ось, вдоль которой последовательно расположены источник электронов, система электродов для формирования электронного пучка и активная пластина с высокоотражающим покрытием на первой своей поверхности, закрепленная на хладопроводящей подложке. Вне трубки размещены системы фокусировки и отклонения электронного пучка. В колбе размещены отражающие элементы в виде вогнутого отражателя с оптической осью и плоского отражателя, которые вместе с высокоотражающим покрытием формируют оптический резонатор лазерной электронно-лучевой трубки с активной пластиной внутри этого резонатора. Оптическое окно колбы является плоским отражателем с отражающим покрытием на внутренней поверхности, которое является высокоотражающим на части этой поверхности и частично пропускающим на остальной части поверхности для излучения активной пластины. Технический результат заключается в улучшении направленности и увеличении мощности сканирующего лазерного луча. 11 з.п. ф-лы, 3 ил.

2525665
выдан:
опубликован: 20.08.2014
ИНТЕГРАЛЬНЫЙ ИНЖЕКЦИОННЫЙ ЛАЗЕР С МОДУЛЯЦИЕЙ ЧАСТОТЫ ИЗЛУЧЕНИЯ ПОСРЕДСТВОМ УПРАВЛЯЕМОЙ ПЕРЕДИСЛОКАЦИИ МАКСИМУМА АМПЛИТУДЫ ВОЛНОВЫХ ФУНКЦИЙ НОСИТЕЛЕЙ ЗАРЯДА

Изобретение относится к квантовой электронной технике. В интегральный инжекционный лазер введены верхняя управляющая область второго типа проводимости, примыкающая к верхнему волноводному слою, нижняя управляющая область второго типа проводимости, примыкающая к нижнему волноводному слою, нижняя управляющая область первого типа проводимости, примыкающая сверху к подложке, а снизу - к нижней управляющей области второго типа проводимости и образующая с ней p-n-переход, омический контакт к нижней управляющей области первого типа проводимости, управляющий металлический контакт, примыкающий сверху к верхней управляющей области второго типа проводимости и образующий с ней переход Шоттки. Нижняя граница зоны проводимости нижнего волноводного слоя находится ниже нижней границы зоны проводимости квантоворазмерной активной области и при этом выше нижней границы зоны проводимости верхнего волноводного слоя. Верхняя граница валентной зоны нижнего волноводного слоя находится ниже верхней границы валентной зоны активной области и при этом выше верхней границы валентной зоны верхнего волноводного слоя. Технический результат заключается в обеспечении возможности увеличения быстродействия устройства. 3 ил.

2520947
выдан:
опубликован: 27.06.2014
УСТРОЙСТВО ЛАЗЕРНОЙ ОПТИЧЕСКОЙ НАКАЧКИ КВАНТОВОГО ДИСКРИМИНАТОРА

Устройство лазерной оптической накачки квантового дискриминатора относится к области квантовой электроники и может быть использовано в квантовых стандартах частоты. Достигаемый технический результат - улучшение шумовых свойств за счет применения малошумящей схемы стабилизации частоты света оптической накачки. Устройство содержит оптически связанные лазерный излучатель, оптический модуль коррекции частоты с Y-образным оптическим разветвителем на выходе и квантовый дискриминатор, выход которого через фотодетектор связан с сигнальным входом блока обратной связи, выход которого связан с управляющим входом оптического модуля коррекции частоты, а блок обратной связи содержит синхронный детектор, интегратор, синтезатор сетки частот, управляемый буферный усилитель, генератор сигнала модуляции, задатчик уровня и дифференциальный усилитель. 1 з.п. ф-лы, 1 ил.

2516535
выдан:
опубликован: 20.05.2014
СПОСОБ КОНТРОЛЯ ВНУТРЕННЕГО КВАНТОВОГО ВЫХОДА ПОЛУПРОВОДНИКОВЫХ СВЕТОДИОДНЫХ ГЕТЕРОСТРУКТУР НА ОСНОВЕ GaN

Изобретение относится к измерительной технике, в частности к способам тестирования параметров планарных полупроводниковых светодиодных гетероструктур (ППСГ) на основе GaN. Способ включает облучение светоизлучающей полупроводниковой гетероструктуры пучком электронов и возбуждение катодолюминесценции, причем возбуждение катодолюминесценции осуществляют облучением в импульсном режиме с длительностью импульса от 10 нс до 400 нс. Энергию электронов обеспечивают преимущественно 18 кэВ и выше. Технический результат заключается в уменьшении влияния неоднородности ионизационных потерь и в устранении деградации активных слоев ППСГ при измерениях. 2 ил.

2503024
выдан:
опубликован: 27.12.2013
МУЛЬТИБАРЬЕРНАЯ ГЕТЕРОСТРУКТУРА ДЛЯ ГЕНЕРАЦИИ МОЩНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ СУБ- И ТЕРАГЕРЦОВОГО ДИАПАЗОНОВ

Изобретение относится к приборным структурам для генерации мощного электромагнитного излучения суб- и терагерцового диапазонов, которые применяются в компактных и мощных импульсных генераторах, детекторах и смесителях субтерагерцового и терагерцового диапазона частот. Изобретение обеспечивает увеличение мощности и расширение частотного диапазона компактных генераторов терагерцового излучения. В мультибарьерной гетероструктуре для генерации мощного электромагнитного излучения субтерагерцового и терагерцового частотного диапазонов, представляющей собой многослойную гетероструктуру из чередующихся слоев узкозонного и широкозонного полупроводников, где слой широкозонного полупроводника является энергетическим барьером EC для электронов из узкозонного слоя, согласно изобретению, толщины d гетерослоев выбираются из условия где D - коэффициент диффузии электронов, а - время релаксации избыточной тепловой энергии электронов в решетку; широкозонные (барьерные) слои не легированы, а концентрация доноров Nd в узкозонных слоях удовлетворяет условию 1017 см-3 Nd 1018 см-3; высота энергетического барьера EC>6kT; количество чередующихся пар узкозонных и широкозонных слоев n>4, причем материал широкозонного барьерного слоя в первой паре отличается от всех остальных, последующих, и выбирается обеспечивающим пониженную по сравнению с последующими высоту первого энергетического барьера. 1 з.п. ф-лы, 3 ил.

2499339
выдан:
опубликован: 20.11.2013
СПОСОБ СИНХРОНИЗАЦИИ ЛИНЕЙКИ ЛАЗЕРНЫХ ДИОДОВ

Изобретение относится к области лазерной техники. Способ заключается в том, что на линейку лазерных диодов (1) с коллимирующей цилиндрической линзой (2) помещают резонансное решеточное волноводное зеркало (3) под углом к выходному торцу линейки лазерных диодов (1) с дифракционной решеткой на одной или нескольких поверхностях раздела сред резонансного решеточного волноводного зеркала (3), выполненной в виде гофра. При этом угол наклона, параметры резонансного решеточного волноводного зеркала (3) и дифракционной решетки подбирают таким образом, чтобы в резонансном решеточном волноводном зеркале (3) при падении на него +1 или -1 порядка дифракции излучения линейки лазерных диодов (1) возбуждались две моды, распространяющиеся в противоположных направлениях, при взаимодействии которых с дифракционной решеткой резонансного решеточного волноводного зеркала (3) они излучаются в прилегающие к упомянутому резонансному решеточному волноводному зеркалу (3) среды. Резонансное решеточное волноводное зеркало (3) обладает просветляющими свойствами, исключающими паразитную генерацию на френелевском отражении и обеспечивающую выход излучения в виде -1 или +1 порядка дифракции излучения линейки лазерных диодов (1). Технический результат заключается в обеспечении возможности формирования выходного излучения в виде одного +1 или -1 порядка дифракции от линейки лазерных диодов с расходимостью, определяемой ее полной апертурой. 4 ил.

2488929
выдан:
опубликован: 27.07.2013
СПОСОБ СОЗДАНИЯ СВЕТОИЗЛУЧАЮЩЕГО ЭЛЕМЕНТА

Изобретение относится к способам изготовления светоизлучающего элемента с длиной волны из ближней инфракрасной области спектра. Диодная светоизлучающая структура формируется на монокристаллическом кремнии с ориентацией поверхности (111) или (100). Активная зона светоизлучающего элемента представляет собой наноразмерные кристаллиты (нанокристаллиты) полупроводникового дисилицида железа, упруго встроенные в монокристаллический эпитаксиальный кремний. Перед формированием активной зоны на подложку наносится слой нелегированного кремния для ее пространственного отделения от подложки (буферный слой). Нанокристаллиты образуются при эпитаксиальном заращивании, предварительно сформированном на буферном слое методом твердофазной эпитаксии наноостровков полупроводникового дисилицида железа. Применение особых режимных параметров обеспечивает высокую концентрацию нанокристаллитов в активной зоне. Цикл, включающий формирование наноостровков и их последующую агрегацию в нанокристаллиты, повторяют несколько раз, что обеспечивает формирование многослойной активной структуры. Технический результат - повышение эффективности светоотдачи светоизлучающего элемента за счет возможности уменьшения размеров кристаллитов полупроводникового дисилицида железа (до 5-40 нм) и обеспечения их высокой плотности (количества кристаллитов в единице объема кремниевой матрицы) и в силу этого упругого встраивания в кремниевую матрицу и значительной напряженности внутренней структуры кристаллитов, а также повышение интенсивности светоизлучающего элемента за счет увеличения объема активной зоны. 1 з.п. ф-лы, 11 ил.

2488920
выдан:
опубликован: 27.07.2013
СПОСОБ СОЗДАНИЯ СВЕТОИЗЛУЧАЮЩЕГО ЭЛЕМЕНТА

Изобретение относится к способам изготовления светоизлучающего элемента с длиной волны из ближней инфракрасной области спектра. Диодная светоизлучающая структура формируется на монокристаллическом кремнии с ориентацией поверхности (111) или (100). Активная зона светоизлучающего элемента представляет собой наноразмерные кристаллиты (нанокристаллиты) полупроводникового дисилицида железа, упруго встроенные в монокристаллический эпитаксиальный кремний. Перед формированием активной зоны на подложку наносится слой нелегированного кремния для ее пространственного отделения от подложки (буферный слой). Нанокристаллиты образуются при эпитаксиальном заращивании предварительно сформированных на буферном слое методом молекулярно-лучевой эпитаксии наноостровков полупроводникового дисилицида железа. Применение режимных параметров согласно изобретению обеспечивает высокую концентрацию нанокристаллитов в активной зоне. Изобретение обеспечивает повышение эффективности светоотдачи светоизлучающего элемента за счет возможности уменьшения размеров кристаллитов полупроводникового дисилицида железа (до 20-40 нм) и обеспечения их высокой плотности (количества кристаллитов в единице объема кремниевой матрицы) и в силу этого упругого встраивания в кремниевую матрицу и значительной напряженности внутренней структуры кристаллитов. 2 н.п. ф-лы, 9 ил.

2488919
выдан:
опубликован: 27.07.2013
СПОСОБ СОЗДАНИЯ СВЕТОИЗЛУЧАЮЩЕГО ЭЛЕМЕНТА

Изобретение относится к способам изготовления светоизлучающего элемента с длиной волны из ближней инфракрасной области спектра.

Диодная светоизлучающая структура формируется на монокристаллическом кремнии с ориентацией поверхности (111) или (100). Активная зона светоизлучающего элемента представляет собой наноразмерные кристаллиты (нанокристаллиты) полупроводникового дисилицида железа, упруго встроенные в монокристаллический эпитаксиальный кремний. Перед формированием активной зоны на подложку наносится слой нелегированного кремния для ее пространственного отделения от подложки (буферный слой). Нанокристаллиты образуются при эпитаксиальном заращивании предварительно сформированных на буферном слое методом молекулярно-лучевой эпитаксии наноостровков полупроводникового дисилицида железа. Применение особых режимных параметров обеспечивает высокую концентрацию нанокристаллитов в активной зоне. Цикл, включающий формирование наноостровков и их последующую агрегацию в нанокристаллиты, повторяют несколько раз, что обеспечивает формирование многослойной активной структуры. Изобретение обеспечивает повышение эффективности светоотдачи светоизлучающего элемента за счет возможности уменьшения размеров кристаллитов полупроводникового дисилицида железа (до 20-40 нм) и обеспечения их высокой плотности (количества кристаллитов в единице объема кремниевой матрицы) и в силу этого упругого встраивания в кремниевую матрицу и значительной напряженности внутренней структуры кристаллитов, а также повышение интенсивности светоизлучающего элемента за счет увеличения объема активной зоны. 1 з.п. ф-лы, 10 ил.

2488918
выдан:
опубликован: 27.07.2013
СПОСОБ СОЗДАНИЯ СВЕТОИЗЛУЧАЮЩЕГО ЭЛЕМЕНТА

Изобретение относится к способам изготовления светоизлучающего элемента с длиной волны из ближней инфракрасной области спектра.

Диодная светоизлучающая структура формируется на монокристаллическом кремнии с ориентацией поверхности (111) или (100). Активная зона светоизлучающего элемента представляет собой наноразмерные кристаллиты (нанокристаллиты) полупроводникового дисилицида железа, упруго встроенные в монокристаллический эпитаксиальный кремний. Перед формированием активной зоны на подложку наносится слой нелегированного кремния для ее пространственного отделения от подложки (буферный слой). Нанокристаллиты образуются при эпитаксиальном заращивании предварительно сформированных на буферном слое методом молекулярно-лучевой эпитаксии наноостровков полупроводникового дисилицида железа. Применение особых режимных параметров обеспечивает высокую концентрацию нанокристаллитов в активной зоне. Цикл, включающий формирование наноостровков и их последующую агрегацию в нанокристаллиты, повторяют несколько раз, что обеспечивает формирование многослойной активной структуры. Изобретение обеспечивает возможность повышения эффективности светоотдачи светоизлучающего элемента за счет возможности уменьшения размеров кристаллитов полупроводникового дисилицида железа (до 20-40 нм) и обеспечения их высокой плотности (количества кристаллитов в единице объема кремниевой матрицы) и в силу этого упругого встраивания в кремниевую матрицу и значительной напряженности внутренней структуры кристаллитов, а также повышение интенсивности светоизлучающего элемента за счет увеличения объема активной зоны. 1 з.п. ф-лы, 11 ил.

2488917
выдан:
опубликован: 27.07.2013
СПОСОБ СОЗДАНИЯ СВЕТОИЗЛУЧАЮЩЕГО ЭЛЕМЕНТА

Изобретение относится к способам изготовления светоизлучающего элемента с длиной волны из ближней инфракрасной области спектра. Диодная светоизлучающая структура формируется на монокристаллическом кремнии с ориентацией поверхности (111) или (100). Активная зона светоизлучающего элемента представляет собой наноразмерные кристаллиты (нанокристаллиты) полупроводникового дисилицида железа, упруго встроенные в монокристаллический эпитаксиальный кремний. Перед формированием активной зоны на подложку наносится слой нелегированного кремния для ее пространственного отделения от подложки (буферный слой). Нанокристаллиты образуются при эпитаксиальном заращивании, предварительно сформированном на буферном слое методом твердофазной эпитаксии наноостровков полупроводникового дисилицида железа. Применение особых режимных параметров обеспечивает высокую концентрацию нанокристаллитов в активной зоне. Изобретение обеспечивает повышение эффективности светоизлучающего элемента за счет возможности уменьшения размеров кристаллитов полупроводникового дисилицида железа -FeSi2 (до 5-40 нм) и обеспечения их высокой плотности (количества кристаллитов в единице объема кремниевой матрицы) и в силу этого упругого встраивания в кремниевую матрицу и значительной напряженности внутренней структуры кристаллитов. 1 з.п. ф-лы, 8 ил.

2485632
выдан:
опубликован: 20.06.2013
СПОСОБ СОЗДАНИЯ СВЕТОИЗЛУЧАЮЩЕГО ЭЛЕМЕНТА

Изобретение относится к способам изготовления светоизлучающего элемента с длиной волны из ближней инфракрасной области спектра. Диодная светоизлучающая структура формируется на монокристаллическом кремнии с ориентацией поверхности (111) или (100). Активная зона светоизлучающего элемента представляет собой наноразмерные кристаллиты (нанокристаллиты) полупроводникового дисилицида железа, упруго встроенные в монокристаллический эпитаксиальный кремний. Перед формированием активной зоны на подложку наносится слой нелегированного кремния для ее пространственного отделения от подложки (буферный слой). Нанокристаллиты образуются при эпитаксиальном заращивании предварительно сформированных на буферном слое методом молекулярно-лучевой эпитаксии наноостровков полупроводникового дисилицида железа. Применение особых режимных параметров обеспечивает высокую концентрацию нанокристаллитов в активной зоне. Изобретение обеспечивает повышение эффективности светоизлучающего элемента за счет обеспечения возможности уменьшения размеров кристаллитов полупроводникового дисилицида железа -FeSi2 (до 20-40 нм) с высокой плотностью (количеством кристаллитов в единице объема кремниевой матрицы) и в силу этого упругого их встраивания в кремниевую матрицу и большей напряженности внутренней структуры. 1 з.п. ф-лы, 8 ил.

2485631
выдан:
опубликован: 20.06.2013
ЧАСТОТНО-ПЕРЕСТРАИВАЕМЫЙ ИСТОЧНИК КОГЕРЕНТНОГО ИЗЛУЧЕНИЯ ДАЛЬНЕГО ИНФРАКРАСНОГО И ТЕРАГЕРЦОВОГО ДИАПАЗОНА НА ПОЛУПРОВОДНИКОВОЙ НАНОГЕТЕРОСТРУКТУРЕ

Изобретение относится к генераторам квантового излучения. Частотно-перестраиваемый источник когерентного терагерцового и дальнего инфракрасного излучения выполнен на основе полупроводниковой наногетероструктуры и возбуждается импульсами среднего инфракрасного диапазона. Между источником возбуждающих импульсов и полупроводниковой наногетороструктурой расположен фильтр в виде пластинки, с периодически чередующимися прозрачными и непрозрачными полосками для достижения пространственной периодичности поляризации, возбуждаемой в активной области полупроводниковой наногетероструктуры. Технический результат заключается в увеличении мощности излучения. 3 ил.

2478243
выдан:
опубликован: 27.03.2013
СПОСОБ ИЗГОТОВЛЕНИЯ ЛАЗЕРНОГО ДИОДА С ПОВЫШЕННОЙ ЯРКОСТЬЮ ИЗЛУЧЕНИЯ

Способ изготовления лазерного диода с повышенной яркостью излучения состоит в том, что формируют широко-эмиттерную лазерную среду, способную генерировать многомодовое оптическое излучение, которая имеет активный волноводный излучающий слой, первый конец и второй конец. Формируют частично прозрачное зеркало на втором конце широко-эмиттерной лазерной среды, размещают широко-эмиттерную лазерную среду с частично прозрачным зеркалом на подложке с высокой теплопроводностью. При этом формируют устройство перестройки модовой структуры, основанное на цифровой планарной голограмме, имеющее входной торец, причем указанное устройство образуют путем формирования цифровой планарной голограммы у первого конца широко-эмиттерной лазерной среды в оптическом взаимодействии с ней, используют цифровую планарную голограмму в качестве непрозрачного зеркала, размещая ее на той же подложке, на которой размещена лазерная среда, в результате чего формируется оптический резонатор, и осуществляют селекцию, перестройку и усиление мод оптического излучения лазерного диода по заданной функции. Технический результат заключается в обеспечении улучшения оптических характеристик лазерного диода без уменьшения оптической мощности. 6 з.п. ф-лы, 7 ил.

2477915
выдан:
опубликован: 20.03.2013
ПОЛУПРОВОДНИКОВЫЙ ИСТОЧНИК ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ (ВАРИАНТЫ)

Полупроводниковый источник инфракрасного излучения включает полупроводниковую подложку (1) с двумя оптически связанными и геометрически разнесенными дисковыми резонаторами (2) или кольцевыми резонаторами (10) в виде гетероструктур. На поверхность полупроводниковой подложки (1) противолежащую поверхности с дисковыми резонаторами (2) или кольцевыми резонаторами (10), нанесен первый омический контакт (3). По одному второму омическому контакту (8) нанесено на торец соответствующего дискового резонатора (2) или кольцевого резонатора (10), причем расстояние от внешнего края второго контакта до внешнего края резонатора не превышает 100 мкм, при этом дисковые резонаторы (2) или кольцевые резонаторы (10) отстоят друг от друга на расстояние L или взаимно перекрывают в области волноводов на глубину D, которые удовлетворяют определенным соотношениям. Технический результат заключается в упрощении конструкции и обеспечении снижения оптических потерь при одномодовой генерации в средней ИК-области спектра. 2 н.п. ф-лы, 14 ил.

2465699
выдан:
опубликован: 27.10.2012
ПОЛУПРОВОДНИКОВЫЙ ДИСКОВЫЙ ЛАЗЕР

Лазер содержит активную пластину с зеркальным покрытием на первой поверхности, закрепленную на первой хладопроводящей подложке, внешнее зеркало обратной связи и лазер накачки. Активная пластина находится между зеркальным покрытием и внешним зеркалом обратной связи, которые являются элементами оптического резонатора дискового лазера. Лазер накачки имеет свой устойчивый оптический резонатор и длина волны его излучения короче длины волны излучения дискового лазера. При этом активная пластина дискового лазера является одним из отражающих элементов устойчивого оптического резонатора лазера накачки, причем при отражении генерируемого в лазере накачки излучения от активной пластины часть излучения частично поглощается в активной пластине, тем самым возбуждая дисковый лазер. Технический результат заключается в увеличении мощности излучения и расширении спектрального диапазона. 21 з.п. ф-лы, 9 ил.

2461932
выдан:
опубликован: 20.09.2012
ЛИНЕЙКА ЛАЗЕРНЫХ ДИОДОВ

Изобретение относится к полупроводниковой электронике. Линейка лазерных диодов состоит из параллельно включенных лазерных диодов на основе полупроводниковых А3В5 лазерных гетероструктур, многослойных окислов и многослойной контактной металлизации на верхней и нижней плоскостях линейки, при этом внешние проводящие слои металлизации выполнены из германия. Технический результат заключается в обеспечении снижения механических напряжений, возникающих в линейке лазерных диодов в процессе ее изготовления. 1 з.п. ф-лы, 5 ил.

2455739
выдан:
опубликован: 10.07.2012
УСТРОЙСТВО СМЕЩЕНИЯ ТОКА ПОЛУПРОВОДНИКОВОГО ЛАЗЕРА И КОНТРОЛЯ РАБОТОСПОСОБНОСТИ ДЛЯ АНАЛОГОВЫХ ВОЛОКОННО-ОПТИЧЕСКИХ ЛИНИЙ СВЯЗИ

Изобретение относится к радиотехнике и оптоэлектронике, а именно к волоконно-оптическим системам передачи аналоговых сигналов. Устройство включает цепи контроля тока лазера, тока мониторного фотодиода и температуры окружающей среды. Задаваемые микроконтроллером значения уровня мощности поддерживаются компаратором. Также устройство содержит цепи смещения тока лазера для модуляции широкополосным аналоговым сигналом и контроля мощности модуляции и цепь установки требуемой мощности излучения лазера в зависимости от температуры среды со сглаживающим фильтром. Причем смещение тока и мощность излучения лазера регулируется таким образом, чтобы сохранялся тип устойчивости свободной генерации, устанавливаемый по предварительно полученным табличным данным. Технический результат заключается в обеспечении максимального динамического диапазона и сохранении неравномерности амплитудно-частотной характеристики волоконно-оптической линии передачи аналоговых высокочастотных сигналов в широком диапазоне рабочих температур. 2 ил.

2454765
выдан:
опубликован: 27.06.2012
ОПТОЭЛЕКТРОННОЕ УСТРОЙСТВО ДЛЯ ВЫСОКОСКОРОСТНОЙ ПЕРЕДАЧИ ДАННЫХ, ОСНОВАННОЕ НА СДВИГЕ КРАЯ СТОП-ЗОНЫ РАСПРЕДЕЛЕННОГО БРЭГГОВСКОГО ОТРАЖАТЕЛЯ ЗА СЧЕТ ЭЛЕКТРООПТИЧЕСКОГО ЭФФЕКТА

Вертикально интегрированное оптоэлектронное устройство служит для высокоскоростной передачи данных путем прямой или непрямой модуляции интенсивности испускаемого света. Прибор включает в себя по меньшей мере один многослойный интерференционный отражатель и по меньшей мере один резонатор. В одном варианте осуществления изобретения отражатель работает в качестве модулирующего элемента под управлением приложенного напряжения. Край стоп-зоны подвергается настройке электрооптическими методами благодаря квантово-ограниченному эффекту Штарка вблизи резонансной моды, что создает модуляцию коэффициента пропускания отражателя и, таким образом, производит непрямую модуляцию интенсивности света. В другом варианте осуществления изобретения профиль оптического поля в резонаторе является функцией смещения длины волны стоп-зоны, и устройство работает в качестве излучателя света с настраиваемой длиной волны. В другом варианте осуществления изобретения в отражателе создаются две или более периодичности в распределении коэффициента преломления, что позволяет подавлять паразитные оптические моды и способствует высокоскоростной прямой модуляции интенсивности света, испускаемого устройством. 3 н. и 8 з.п. ф-лы, 34 ил.

2452067
выдан:
опубликован: 27.05.2012
ИНЖЕКЦИОННЫЙ ЛАЗЕР

Лазер на основе гетероструктуры включает волноводный слой, заключенный между широкозонными эмиттерами р- и n-типа проводимости, являющимися одновременно ограничительными слоями, активную область, состоящую из квантово-размерного активного слоя, оптический Фабри-Перо резонатор и полосковый омический контакт, под которым расположена область инжекции. В волноводном слое вне области инжекции выполнена легированная область, при этом фактор оптического ограничения замкнутой моды (ЗМ) в легированной области и концентрация свободных носителей заряда в легированной области удовлетворяют соотношению:

2444101
выдан:
опубликован: 27.02.2012
ИНЖЕКЦИОННЫЙ ЛАЗЕР

Лазер на основе гетероструктуры содержит волноводный слой, заключенный между широкозонными эмиттерами p- и n-типа проводимости, являющимися одновременно ограничительными слоями, активную область, состоящую из квантово-размерного активного слоя, оптический Фабри-Перо резонатор и полосковый омический контакт, под которым расположена область инжекции. В волноводный слой вне области инжекции введена область полупроводникового материала с шириной запрещенной зоны, меньшей ширины запрещенной зоны активной области. При этом фактор оптического ограничения замкнутой моды области упомянутого полупроводникового материала удовлетворяет соотношению:

2443044
выдан:
опубликован: 20.02.2012
СПОСОБ СИНХРОНИЗАЦИИ ЛИНЕЙКИ ЛАЗЕРНЫХ ДИОДОВ И ФАЗОВОЕ РЕШЕТЧАТОЕ ЗЕРКАЛО ДЛЯ ЕГО РЕАЛИЗАЦИИ

Способ заключается в том, что перед линейкой лазерных диодов, имеющей глухое заднее зеркало и просветляющее покрытие на выходной апертуре, располагают коллимирующую линзу, Фурье-объектив и выходное зеркало. Фурье-объектив осуществляет прямое преобразование Фурье-апертуры линейки лазерных диодов. Выходное зеркало, размещенное в Фурье-плоскости упомянутого Фурье-объектива представляет собой фазовое решетчатое зеркало, содержащее прозрачную подложку с гофрированной поверхностью прямоугольного сечения и диэлектрическое зеркало. Период прямоугольного гофра , где D - расстояние между центрами соседних лазерных диодов линейки лазерных диодов, f2 - фокусное расстояние упомянутого Фурье-объектива. Глубина канавок упомянутой гофрированной поверхности, на которую нанесено диэлектрическое зеркало, равна четверти рабочей длины волны в вакууме. Технический результат заключается в уменьшении дополнительных потерь в резонаторе при обеспечении коллективной синфазной генерации всех лазерных диодов линейки. 2 н. и 2 з.п. ф-лы, 3 ил.

2433516
выдан:
опубликован: 10.11.2011
ПОЛУПРОВОДНИКОВЫЙ ЧАСТОТНО-ПЕРЕСТРАИВАЕМЫЙ ИСТОЧНИК ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ

Изобретение относится к оптоэлектронной технике, а именно к полупроводниковым частотно-перестраиваемым источникам инфракрасного (ИК) излучения на основе лазера с дисковым резонатором, работающего на модах шепчущей галереи (Whispering Gallery Modes-WGM). Такие источники ИК излучения могут применяться в спектрометрии, медицине, оптических системах связи и передачи информации, в оптических сверхскоростных вычислительных и коммутационных системах, при создании медицинской аппаратуры. Полупроводниковый частотно-перестраиваемый источник инфракрасного излучения содержит полупроводниковый частотно-перестраиваемый дисковый лазер для диапазона длин волн 1.8÷4.5 мкм и два источника напряжения. Лазер включает подложку GaSb, квантово-размерную гетероструктуру, выращенную на подложке, резонатор и верхний и нижний омические контакты. Гетероструктура состоит из активной области, ограничительных слоев GaAlSbAs и контактного слоя GaSb. Активная область содержит волноводные слои GaAlAsSb, по меньшей мере, одну квантовую яму Ga1-xInxAs YSb1-Y с выбранными в соответствии с требуемой из диапазона 1.8÷4.5 мкм длиной волны доминирующей моды излучения составом и шириной из диапазона от 2 нм до 30 нм. Резонатор выполнен в форме диска или сектора диска. Нижний омический контакт нанесен на подложку, а верхний нанесен на фронтальную поверхность резонатора и состоит из двух электрически изолированных друг от друга частей. Источники напряжения выполнены с возможностью независимого приложения к двум частям упомянутого верхнего омического контакта постоянного, либо синхронизированного по фазе импульсного напряжения, противоположной полярности относительно нижнего контакта. Изобретение позволяет увеличить диапазон частотной перестройки доминирующей моды источника. 2 ил.

2431225
выдан:
опубликован: 10.10.2011
СПОСОБ СИНХРОНИЗАЦИИ ЛИНЕЙКИ ЛАЗЕРНЫХ ДИОДОВ И РЕЗОНАНСНОЕ РЕШЕТЧАТОЕ ВОЛНОВОДНОЕ ЗЕРКАЛО ДЛЯ ЕГО РЕАЛИЗАЦИИ

Способ заключается в том, что непосредственно за коллимирующей цилиндрической линзой установленной перед просветленным выходным торцом линейки лазерных диодов помещают резонансное решетчатое зеркало в виде планарного волновода с дифракционной решеткой на его поверхности. Указанная решетка выполнена в виде гофра, причем параметры волновода и дифракционной решетки подбирают таким образом, чтобы в волноводе возбуждались две моды, распространяющиеся в противоположных направлениях. При этом при взаимодействии указанных мод с гофрированной поверхностью волновода они излучаются в прилегающие к упомянутому волноводу среды. Гофрированная поверхность волновода обладает просветляющими свойствами, исключающими паразитную генерацию на Френелевском отражении. Технический результат заключается в обеспечении пространственной когерентности излучения и в повышении компактности устройства. 2 н. и 6 з.п. ф-лы, 5 ил.

2429555
выдан:
опубликован: 20.09.2011
ДВУХЧАСТОТНЫЙ ЛАЗЕРНЫЙ ЭЛЕКТРОННО-ЛУЧЕВОЙ ПРИБОР ДЛЯ ГЕНЕРАЦИИ ПИКОСЕКУНДНЫХ ИМПУЛЬСОВ

Лазерный электронно-лучевой прибор включает электронную пушку, системы фокусировки и отклонения электронного пучка и лазерный экран. Экран включает плоскопараллельную полупроводниковую пластину с нанесенными на ее поверхности отражающими покрытиями. В состав прибора введены СВЧ отклоняющая система, расположенная между электронной пушкой и системой отклонения, и щелевая маска, выполненная из поглощающего электроны материала, расположенная на лазерном экране со стороны электронного пучка. Полупроводниковая пластина выполнена из полупроводниковых материалов с различной длиной волны генерируемого излучения в областях, расположенных по разные стороны произвольно взятой перемычки щелевой маски. Технический результат заключается в обеспечении возможности генерации синхронизированных пикосекундных импульсов лазерного излучения, по крайней мере, двух длин волн с возможностью сканирования лазерного излучения в пределах, определяемых размером лазерного экрана. 1 ил.

2427951
выдан:
опубликован: 27.08.2011
РЕЗОНАТОР НА МОДАХ ШЕПЧУЩЕЙ ГАЛЕРЕИ С ВЕРТИКАЛЬНЫМ ВЫХОДОМ ИЗЛУЧЕНИЯ

Резонатор имеет круговое сечение и изготовлен в виде тела вращения. Тело вращения включает в себя активную область, обкладочные слои и часть подложки. Образующая боковой поверхности тела вращения имеет наклон по отношению к нормали гетероструктуры. Технический результат заключается в обеспечении возможности вывода широкополосного по длине волны излучения в вертикальном направлении. 2 ил.

2423764
выдан:
опубликован: 10.07.2011
ПОЛУПРОВОДНИКОВЫЙ ЛАЗЕРНЫЙ ИЗЛУЧАТЕЛЬ С ПОЛОСОЙ МОДУЛЯЦИИ В СВЧ-ДИАПАЗОНЕ

Полупроводниковый лазерный излучатель включает в себя лазерный кристалл с положительным и отрицательными электрическими выводами и узел электрического ввода со сформированной на диэлектрической подложке копланарной полосковой СВЧ-линии передачи. Лазерный кристалл подсоединяется к заземляющим проводникам копланарной полосковой СВЧ-линии отрицательными выводами, а другим выводом - к сигнальному проводнику той же копланарной полосковой СВЧ-линии передач. В лазерном кристалле положительный и отрицательные выводы выполнены на одной стороне с расположением вывода одной полярности между выводами другой полярности, лазерный кристалл установлен методом «перевернутого монтажа» и при помощи пайки закреплен на конце сформированной на диэлектрической подложке копланарной полосковой СВЧ-линии передачи. Копланарная полосковая СВЧ-линия передачи расположена под лазерным кристаллом так, чтобы совместить соответствующие выводы лазерного кристалла и сигнальную и заземляющие полоски копланарной полосковой СВЧ-линии передачи. Технический результат заключается в расширении полосы модуляции. 7 ил.

2421857
выдан:
опубликован: 20.06.2011
СПОСОБ ПАССИВАЦИИ И ЗАЩИТЫ ГРАНЕЙ РЕЗОНАТОРА ПОЛУПРОВОДНИКОВЫХ ЛАЗЕРОВ

При реализации способа лазерную гетероструктуру расщепляют на линейки или кристаллы лазерных диодов во внешней атмосфере, обеспечивая сколотые грани резонатора. Затем линейку или кристалл лазерного диода помещают в вакуумную камеру с остаточным давлением по кислороду не более 10-10 торр, где с целью удаления образовавшихся окислов грани резонатора обрабатывают ионами плазмы аргона при отрицательном потенциале на образцах (-5) - (-10) В. Создают пассивирующий нитридный поверхностный слой на гранях резонатора с использованием плазмы, содержащей азот, при отрицательном потенциале на образцах (-20) - (-30) В. Напыляют, по меньшей мере, один слой блокирующего кислород и взаимную диффузию покрытия Si3N4 толщиной 20-30 нм на каждую обрабатываемую грань резонатора при отрицательном потенциале на образцах (-10) - (-15) В. После обработки ионами плазмы азота проводят локальный прогрев обрабатываемых граней резонатора ускоренными электронами плазмы ионов аргона при положительном потенциале на образцах 20-30 В. Технический результат заключается в увеличении оптической прочности выходных зеркал и выходной оптической мощности полупроводниковых лазеров, увеличении долговременной надежности полупроводниковых лазеров, в упрощении процесса изготовления надежных полупроводниковых лазеров. 1 ил.

2421856
выдан:
опубликован: 20.06.2011
Наверх